125k views
4 votes
Which region represents the solution to the given system of inequalities?
x+3/5-3
x≥3

User Kecer
by
8.2k points

1 Answer

6 votes

Answer:x > 12/5

Step-by-step explanation: The given system of inequalities is:

x + 3/5 > 3

x ≥ 3

To determine the region that represents the solution, we need to find the overlapping region that satisfies both inequalities.

Let's first solve the first inequality:

x + 3/5 > 3

Subtracting 3/5 from both sides:

x > 3 - 3/5

x > 15/5 - 3/5

x > 12/5

Now, let's consider the second inequality:

x ≥ 3

Combining the two inequalities, we can see that the solution lies in the region where x is greater than 12/5 and greater than or equal to 3. Since x must be greater than both 12/5 and 3, the solution region is x > 12/5.

Therefore, the solution to the given system of inequalities is x > 12/5, which represents all the values of x greater than 12/5.

User Jrd
by
8.8k points

Related questions