Answer:
![b=3√(13)](https://img.qammunity.org/2022/formulas/mathematics/college/173089i0p12yr4dcgxpga8q2p2pjtxpjds.png)
Explanation:
In a right angled triangle, if a perpendicular is drawn from a vertex of the right angle then triangles on both sides of the perpendicular are similar.
In ΔPDY, ∠D = 90° and DM ⊥ PY
So, ΔPMD ≈ ΔDMY
If two triangles are similar then their corresponding sides are proportional.
![(PM)/(DM)=(MD)/(MY)](https://img.qammunity.org/2022/formulas/mathematics/college/eyd5qjfhzmfpdlzfme427hrznwn6t2hipp.png)
Put
![PM=4\,,\,DM=c\,,\,MD=c\,,\,MY=9](https://img.qammunity.org/2022/formulas/mathematics/college/sowgds01hq8lktqh3jtrzu7ccubyojiyz8.png)
So,
![(4)/(c)=(c)/(9)\\\\c=36\\c=6](https://img.qammunity.org/2022/formulas/mathematics/college/zzy1clh1dhpcgisefqobfidz6z5mkg3a49.png)
According to Pythagoras theorem, square of hypotenuse is equal to sum of squares of the other two sides.
In ΔDMY,
![DY^2=DM^2+MY^2\\b^2=c^2+9^2](https://img.qammunity.org/2022/formulas/mathematics/college/z4kl83t6qnfogis8n5dt07vhuuybtm8cpy.png)
Put
![c=6](https://img.qammunity.org/2022/formulas/mathematics/college/x6h53vwukhwyq72ynipqgctsywn6glpi08.png)
![b^2=6^2+9^2\\b^2=36+81\\b^2=117\\b=√(3^2(13))\\b=3√(13)](https://img.qammunity.org/2022/formulas/mathematics/college/b36odh3pn24oedqqjoe5ti5zl2waym6gwl.png)