160k views
2 votes
Find
\tt \: (dy)/(dx) when
\tt {x}^(2) + {y}^(2) = log(x + y)

Please help!​

2 Answers

0 votes

Answer:


\boxed{\bold{\tt(dy)/(dx)= (2x^2+2xy-1)/(1-2xy-2y^2)}}

Explanation:

x^2 + y^2 = log(x+y)

Differentiating both sides with respect to x.


\bold{\tt (d)/(dx) (x^2 + y^2) =(d)/(dx) log(x+y)}


\bold{\tt{Apply\:the\:Sum/Difference\:Rule}:}


\bold{\tt (d)/(dx)\left(x^2\right)+(d)/(dx)\left(y^2\right) =(d)/(dx) log(x+y)}

Apply Power rule and chain rule


\bold{\tt2x+2y(dy)/(dx)=(d)/(dx) log(x+y)}


\tt Apply\:the\:chain\:rule:


\bold{\tt 2x+2y(dy)/(dx)= (1)/(x+y)(d)/(dx)\left(x+y\right)}


\bold{\tt{Apply\:the\:Sum/Difference\:Rule}:}


\bold{\tt 2x+2y(dy)/(dx)=(1)/(x+y)(d)/(dx)x+(1)/(x+y)(d)/(dx)*y}


\bold{\tt 2x+2y(dy)/(dx)=(1)/(x+y)(d)/(dx)x+(1)/(x+y)(d)/(dy)*y*(dy)/(dx)}


\bold{\tt 2x+2y(dy)/(dx)=(1)/(x+y)+(1)/(x+y)(dy)/(dx)}

Solving for
\tt (dy)/(dx)


\bold{\tt 2x-(1)/(x+y)=(1)/(x+y)(dy)/(dx)-2y(dy)/(dx)}


\bold{\tt(1)/(x+y)(dy)/(dx)-2y(dy)/(dx)= 2x-(1)/(x+y)}


\bold{\tt(dy)/(dx)((1)/(x+y)-2y)= 2x-(1)/(x+y)}


\bold{\tt(dy)/(dx)((1-2y(x+y))/(x+y))= (2x(x+y)-1)/(x+y)}


\bold{\tt(dy)/(dx)= ((2x(x+y)-1)/(x+y))/(((1-2y(x+y))/(x+y)))}


\bold{\tt(dy)/(dx)= (2x(x+y)-1)/(1-2y(x+y))}


\bold{\tt(dy)/(dx)= (2x^2+2xy-1)/(1-2xy-2y^2)}

Therefore,Answer is:
\boxed{\bold{\tt(dy)/(dx)= (2x^2+2xy-1)/(1-2xy-2y^2)}}

Note: Formula


\boxed{\bold{\tt{Addition \: Rule:(d)/(dx)(x^n+y^n) =(d)/(dx)*x^n+(d)/(dx)*y^n}}}


\boxed{\bold{\tt{Power \: Rule:(d)/(dx)x^n =n*x^(n-1)}}}


\boxed{\bold{\tt{Chain \:\: Rule: (d)/(dx)y^n=(d)/(dy)y^n(dy)/(dx)=n*y^(n-1)(dy)/(dx)}}}


\boxed{\bold{\tt{Product\:Rule:(d)/(dx)(u*v)=(du)/(dx)*v+u*(dv)/(dx)}}}

User PleaseHelpMe
by
8.5k points
4 votes

Answer:


\frac{\text{d}y}{\text{d}x}=(1-2x^2-2xy)/(2xy+2y^2-1)

Explanation:

Given equation:


x^2+y^2=\log(x+y)

Assuming log(x + y) is the natural log:


x^2+y^2=\ln(x+y)

To differentiate an equation that contains a mixture of x and y terms, use implicit differentiation.

Begin by placing d/dx in front of each term of the equation:


\frac{\text{d}}{\text{d}x}x^2+\frac{\text{d}}{\text{d}x}y^2=\frac{\text{d}}{\text{d}x}\ln(x+y)

Differentiate the left side of the equation first.


\boxed{\begin{minipage}{4.5 cm}\underline{Differentiating $x^n$}\\\\If $y=x^n$, then $\frac{\text{d}y}{\text{d}x}=nx^(n-1)$\\\end{minipage}}

Differentiate the terms in x only using the above rule:


2x+\frac{\text{d}}{\text{d}x}y^2=\frac{\text{d}}{\text{d}x}\ln(x+y)

Use the chain rule to differentiate terms in y only.

In practice, this means differentiate with respect to y, and place dy/dx at the end:


2x+2y\frac{\text{d}y}{\text{d}x}=\frac{\text{d}}{\text{d}x}\ln(x+y)

Now we have differentiated the left side of the equation, we can differentiate the right side of the equation.


\boxed{\begin{minipage}{6 cm}\underline{Differentiating $\ln(f(x))$}\\\\If $y=\ln(f(x))$, then $\frac{\text{d}y}{\text{d}x}=(1)/(f(x))\cdot f'(x)$\\\end{minipage}}

Apply the rule to differentiate ln(x + y):


2x+2y\frac{\text{d}y}{\text{d}x}=(1)/(x+y)\cdot \frac{\text{d}}{\text{d}x}(x+y)

Differentiate (x + y):


2x+2y\frac{\text{d}y}{\text{d}x}=(1)/(x+y)\left(1+\frac{\text{d}y}{\text{d}x}\right)

Simplify:


2x+2y\frac{\text{d}y}{\text{d}x}=(1)/(x+y)+(1)/(x+y)\frac{\text{d}y}{\text{d}x}\right)

Rearrange the resulting equation to isolate dy/dx:


2y\frac{\text{d}y}{\text{d}x}-(1)/(x+y)\frac{\text{d}y}{\text{d}x}\right)=(1)/(x+y)-2x


\left(2y-(1)/(x+y)\right)\frac{\text{d}y}{\text{d}x}=(1)/(x+y)-2x


\left((2y(x+y))/(x+y)-(1)/(x+y)\right)\frac{\text{d}y}{\text{d}x}=(1)/(x+y)-(2x(x+y))/(x+y)


\left((2y(x+y)-1)/(x+y)\right)\frac{\text{d}y}{\text{d}x}=(1-2x(x+y))/(x+y)


\frac{\text{d}y}{\text{d}x}=(1-2x(x+y))/(x+y) / (2y(x+y)-1)/(x+y)


\frac{\text{d}y}{\text{d}x}=(1-2x(x+y))/(x+y) \cdot (x+y)/(2y(x+y)-1)


\frac{\text{d}y}{\text{d}x}=(1-2x(x+y))/(2y(x+y)-1)

To simplify further, expand the brackets:


\frac{\text{d}y}{\text{d}x}=(1-2x^2-2xy)/(2xy+2y^2-1)

User Shamal
by
8.3k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories