146k views
5 votes
Correct answer please

Correct answer please-example-1

1 Answer

2 votes

Answer:

50.75

Explanation:

We have:


E[g(x)] = \int\limits^(\infty)_(-\infty) {g(x)f(x)} \, dx \\\\= \int\limits^(1)_(-\infty) {g(x)(0)} \, dx+\int\limits^(6)_(1) {g(x)(2)/(x) } \, dx+\int\limits^(\infty)_(6) {g(x)(0)} \, dx\\\\= \int\limits^(6)_(1) {g(x)(2)/(x) } \, dx\\\\=\int\limits^(6)_(1) {(4x+3)(2)/(x) } \, dx\\\\=\int\limits^(6)_(1) {(4x)(2)/(x) } \, dx + \int\limits^(6)_(1) {(3)(2)/(x) } \, dx\\\\=\int\limits^(6)_(1) {8} \, dx + \int\limits^(6)_(1) {(6)/(x) } \, dx\\\\


=8\int\limits^(6)_(1) \, dx + 6\int\limits^(6)_(1) {(1)/(x) } \, dx\\\\= 8[x]^(^6)_(_1) + 6 [ln(x)]^(^6)_(_1)\\\\= 8[6-1] + 6[ln(6) - ln(1)]\\\\= 8(5) + 6(ln(6))\\\\= 40 + 10.75\\\\= 50.74

User Woozly
by
8.8k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories