Answer:
Step-by-step explanation:
To find the current flowing in the circuit, we can use Ohm's Law and Kirchhoff's circuit laws.
Ohm's Law states that the current (I) flowing through a circuit is equal to the voltage (V) divided by the resistance (R):
I = V / R
In this case, the voltage (V) is the electromotive force (EMF) of the current source, which is 14 V. The total resistance (R) in the circuit is the sum of the internal resistance (r) and the resistances of the two resistors (R1 and R2):
R = r + R1 + R2
Given that the internal resistance (r) is 1Ω and each resistor (R1 and R2) has a resistance of 3Ω, we can substitute these values into the equation:
R = 1Ω + 3Ω + 3Ω = 7Ω
Now we can calculate the current (I):
I = V / R = 14 V / 7Ω = 2 A
Therefore, the current flowing in the circuit is 2 Amperes.