129k views
4 votes
If x^x = 27^x+27 find x

{x}^(x) = {27}^(x + 27)


1 Answer

4 votes


x^x=27^(x+27)\\\ln x^x=\ln (27^(x+27))\\x\ln x=(x+27)\ln27\\x\ln x=x\ln 27+27\ln 27\\x\ln x-x\ln 27=27\ln 27\\\ln x-\ln 27=(27\ln 27)/(x)\\\ln(x)/(27)=(27\ln 27)/(x)\\(x)/(27)=e^{(27\ln 27)/(x)}\\\ln 27=(27\ln 27)/(x)e^{(27\ln 27)/(x)}\\(27\ln 27)/(x)=W(\ln27)\\x=(27\ln 27)/(W(\ln 27))=81

User Fobos
by
8.4k points

No related questions found