Answer:
h(g(f(x))) = (-8)x^2+(-40)x+(-50).
Explanation:
We have:
h(x) = -2x
g(x) = x^2
f(x) = 2x + 5
So, we can replace the respective value:
h(g(f(x)))
first substituting the value of f(x) in x of g(x).
h(g(2x + 5))
second, substituting the value of g(x) in x of h(x).
h((2x + 5)^2)
expanding value using the formula (a+b)^2=a^2+2ab+b^2
h(4x^2+20x+25)
Thirdly, substituting the value of h(x) in x of h(x).
-2(4x^2+20x+25)
opening bracket
-8x^2-40x-50
Therefore, h(g(f(x))) = -8x^2-40x-50.