215k views
0 votes
Given that 2y-3x=5, Find the gradient and y intercept of the line?​

User Pplonski
by
8.4k points

2 Answers

2 votes

The gradient is:

3/2

The y intercept is:

5/2

Work/explanation:

Let's rearrange the equation first so that it's in slope intercept.

Our equation is


\bf{2y-3x=5}

And we should write it in
\bf{y=mx+b} form. Let's go ahead and perform the required operations.

________________________

Add 3x on each side:


\bf{2y=5+3x}


\bf{2y=3x+5}

Now, divide each side by 2:


\bf{y=(3)/(2)x+(5)/(2)}

This is the equation in slope intercept.

As for the gradient, that is the number in front of x : 3/2.

As for the y intercept, that is the constant : 5/2

Hence, these are the answers.

User Shenn
by
7.7k points
1 vote

Answer:

gradient =
(3)/(2) , y- intercept =
(5)/(2)

Explanation:

the equation of a line in slope- intercept form is

y = mx + c ( m is the gradient and c the y- intercept )

given

2y - 3x = 5 ( add 3x to both sides )

2y = 3x + 5 ( divide through by 2 )

y =
(3)/(2) x +
(5)/(2) ← in slope- intercept form

with gradient m =
(3)/(2) and y- intercept c =
(5)/(2)

User Yabada
by
8.1k points

No related questions found