58.5k views
4 votes
Given sinx equals -7/25 and pi

Given sinx equals -7/25 and pi-example-1
User Kapobajza
by
7.5k points

2 Answers

6 votes

Answer:

B

Explanation:


\sin(2 \alpha ) = 2 \sin( \alpha ) \cos( \alpha )

So we must find cos(alpha)

Use the Pythagorean Identity


\sin {}^(2) (x) + \cos {}^(2) (x) = 1

We know sin(x)=-7/25


( - (7)/(25) ) {}^(2) + \cos {}^(2) ( \alpha ) = 1


\cos {}^(2) ( \alpha ) = 1 - (49)/(625)


\cos {}^(2) ( \alpha ) = (576)/(625)


\cos( \alpha ) = (24)/(25)

Since cos Is negative over the 3rd quadrant,


\cos( \alpha ) = - (24)/(25)

So we solve sin(2theta)


\sin(2 \alpha ) = 2( ( - 7)/(25) )( ( - 24)/(25) )


= (336)/(625)

User Pavel Hanpari
by
8.6k points
1 vote

Answer:


\textsf{B)} \quad (336)/(625)

Explanation:

The sine double angle identity is:


\boxed{\sin (A\pm B)=\sin A \cos B\pm\sin B\cos A}

Therefore, using the sine double angle identity, we can rewrite sin 2θ as:


\sin (\theta+\theta)=\sin \theta \cos \theta+\sin \theta \cos \theta


\sin 2\theta=2 \sin \theta \cos \theta

Given that sin θ = -7/25, we can use the trigonometric identity sin²θ + cos²θ = 1 to find cos θ:


\sin^2 \theta+\cos^2 \theta=1


\left(-(7)/(25)\right)^2+\cos^2 \theta=1


\cos^2 \theta=1-\left(-(7)/(25)\right)^2


\cos \theta=\sqrt{1-\left(-(7)/(25)\right)^2}


\cos \theta=(24)/(25)

The given interval for angle θ is:


\pi < \theta < (3\pi)/(2)

From inspection of the unit circle (attached), we can see that angle θ is in quadrant III. In this quadrant, both the sine and cosine of the angle are negative. Therefore:


\cos \theta=-(24)/(25)

Substitute the given value of sin θ and the found value of cos θ into the double angle equation to find the exact solution of sin 2θ:


\begin{aligned}\sin 2 \theta&amp;=2 \sin \theta \cos \theta\\\\&amp;=2 \left(-(7)/(25)\right) \left(-(24)/(25)\right)\\\\&amp;= \left(-(14)/(25)\right) \left(-(24)/(25)\right)\\\\&amp;= (336)/(625)\\\\\end{aligned}

Given sinx equals -7/25 and pi-example-1
User Shaun Bouckaert
by
8.3k points

No related questions found