58.5k views
4 votes
Given sinx equals -7/25 and pi

Given sinx equals -7/25 and pi-example-1
User Kapobajza
by
7.5k points

2 Answers

6 votes

Answer:

B

Explanation:


\sin(2 \alpha ) = 2 \sin( \alpha ) \cos( \alpha )

So we must find cos(alpha)

Use the Pythagorean Identity


\sin {}^(2) (x) + \cos {}^(2) (x) = 1

We know sin(x)=-7/25


( - (7)/(25) ) {}^(2) + \cos {}^(2) ( \alpha ) = 1


\cos {}^(2) ( \alpha ) = 1 - (49)/(625)


\cos {}^(2) ( \alpha ) = (576)/(625)


\cos( \alpha ) = (24)/(25)

Since cos Is negative over the 3rd quadrant,


\cos( \alpha ) = - (24)/(25)

So we solve sin(2theta)


\sin(2 \alpha ) = 2( ( - 7)/(25) )( ( - 24)/(25) )


= (336)/(625)

User Pavel Hanpari
by
8.6k points
1 vote

Answer:


\textsf{B)} \quad (336)/(625)

Explanation:

The sine double angle identity is:


\boxed{\sin (A\pm B)=\sin A \cos B\pm\sin B\cos A}

Therefore, using the sine double angle identity, we can rewrite sin 2θ as:


\sin (\theta+\theta)=\sin \theta \cos \theta+\sin \theta \cos \theta


\sin 2\theta=2 \sin \theta \cos \theta

Given that sin θ = -7/25, we can use the trigonometric identity sin²θ + cos²θ = 1 to find cos θ:


\sin^2 \theta+\cos^2 \theta=1


\left(-(7)/(25)\right)^2+\cos^2 \theta=1


\cos^2 \theta=1-\left(-(7)/(25)\right)^2


\cos \theta=\sqrt{1-\left(-(7)/(25)\right)^2}


\cos \theta=(24)/(25)

The given interval for angle θ is:


\pi < \theta < (3\pi)/(2)

From inspection of the unit circle (attached), we can see that angle θ is in quadrant III. In this quadrant, both the sine and cosine of the angle are negative. Therefore:


\cos \theta=-(24)/(25)

Substitute the given value of sin θ and the found value of cos θ into the double angle equation to find the exact solution of sin 2θ:


\begin{aligned}\sin 2 \theta&amp;=2 \sin \theta \cos \theta\\\\&amp;=2 \left(-(7)/(25)\right) \left(-(24)/(25)\right)\\\\&amp;= \left(-(14)/(25)\right) \left(-(24)/(25)\right)\\\\&amp;= (336)/(625)\\\\\end{aligned}

Given sinx equals -7/25 and pi-example-1
User Shaun Bouckaert
by
8.3k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories