132k views
1 vote
Drag the tiles to the correct boxes to complete the pairs. Not all tiles will be used. Match each quadratic equation with its solution set. 2x^2 - 8x + 5 = 0 2x^2 - 10x -3 = 0 2x^2 - 8x - 3 = 0 2x^2 - 9x - 1 = 0 2x^2 - 9x + 6 = 0 9+-sqrt33/4 arrowRight _ 4+-sqrt6/2 arrowRight _ 9+-sqrt89/4 arrowRight _ 4+-sqrt22/2 arrowRight _

Drag the tiles to the correct boxes to complete the pairs. Not all tiles will be used-example-1
User Thetoolman
by
7.9k points

1 Answer

1 vote

Answer:


\boxed{ (9\pm √(33))/( 4)}\longrightarrow \boxed{2x^2-9x+6=0}


\boxed{(4 \pm √(6))/(2) }\longrightarrow\boxed{ 2x^2-8x+5=0}


\boxed{ (9 \pm √(89))/( 4) }\longrightarrow \boxed{2x^2-9x-1=0 }


\boxed{ (4 \pm √(22))/( 2)}\longrightarrow \boxed{2x^2-8x-3=0}

Explanation:

In order to solve for the solution set of a quadratic equation, we can use the quadratic formula:


\boxed{\bold{x = (-b \pm√(b^2 - 4ac))/(2a)}}

where a, b, and c are the coefficients of the quadratic equation.

For 2x^2-8x+5=0

Comparing the above equation with ax^2+bx+c
In this case, the coefficients are:

a = 2

b = -8

c = 5

Plugging these values into the quadratic formula, we get:


x = (-(-8) \pm √((-8)^2 - 4(2)(5)))/( 2*2)


x = (8 \pm 2√(6))/( 4)


x = 2*(4 \pm √(6))/( 4)


x = (4 \pm √(6))/(2)


\hrulefill

For 2x^2-10x-3=0

Comparing the above equation with ax^2+bx+c
n this case, the coefficients are:

a = 2

b = -10

c = -3

Plugging these values into the quadratic formula, we get:


x = (-(-10) \pm √((-10)^2 - 4(2)(-3)))/( 2*2)


x = (10 \pm √(89))/( 4)


\hrulefill

For 2x^2-8x-3=0
Comparing the above equation with ax^2+bx+c
n this case, the coefficients are:

a = 2

b = -8

c = -3

Plugging these values into the quadratic formula, we get:


x = (-(-8) \pm √((-8)^2 - 4(2)(-3)))/( 2*2)


x = (8 \pm 2√(22))/( 4)


x = 2*(4 \pm √(22))/( 4)


x = (4 \pm √(22))/( 2)


\hrulefillFor 2x^2-9x-1=0

Comparing the above equation with ax^2+bx+c
n this case, the coefficients are:

a = 2

b=-9

c = -1

Plugging these values into the quadratic formula, we get:


x = (-(-9) \pm √((-9)^2 - 4(2)(-1)))/( 2*2)


x = (9 \pm √(89))/( 4)


\hrulefill

For 2x^2-9x+6=0
n this case, the coefficients are:

a = 2

b = -9

c = -6

Plugging these values into the quadratic formula, we get:


x = (-(-9) \pm √((-9)^2 - 4(2)(6)))/( 2*2)


x = (9\pm √(33))/( 4)

User Sergiy
by
8.7k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories