13.1k views
1 vote
A plane rises from take-off and flies at an angle of 7° with the horizontal runway. When it has gained 800 feet, find the distance, to the nearest foot, the plane has flown.

User Ghazgkull
by
8.1k points

1 Answer

5 votes

SOLUTION:

To solve this problem, we can use trigonometry. Let x be the distance flown by the plane. Then, we can use the tangent function to find x:


\qquad\quad\dashrightarrow\:\:\tan(7^\circ) = (800)/(x)

Multiplying both sides by x, we get:


\qquad\qquad\dashrightarrow\:\: x \tan(7^(\circ)) = 800

Dividing both sides by
\tan(7^(\circ)), we get:


\qquad\qquad\dashrightarrow\:\: x = (800)/(\tan(7^(\circ)))

Using a calculator, we find that:


\qquad\qquad\dashrightarrow\:\:\tan(7^(\circ)) \approx 0.122

We have:


\qquad\dashrightarrow\:\: x \approx (800)/(0.122) \approx \bold{6557.38}


\thereforeTo the nearest foot, the distance flown by the plane is 6557 feet.


\blue{\overline{\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad}}

User AlbertoPL
by
7.8k points