97.9k views
2 votes
A father was 30 years old when his son was born. After some time the son's age was a quarter that of the father. How old was the son when he was a quarter of his fathers age?

2 Answers

7 votes

Answer: The son age is "10" and the father age is "40"

Step-by-step explanation:

In starting ,The father age was 30 after few years his son age will be quarter than him.

Let F be father and S be the Son.

F = S + 30

S = (1/4)F

F = (1/4)F + 30

4F = F + 120

3F = 120

F = 40

S = (1/4)(40)

S = 10

Therefore, the son was 10 years old when he was a quarter of his father's age.

User Nicholas W
by
8.8k points
6 votes

Answer: The son was 30 years old when he was a quarter of his father's age.

Step-by-step explanation:

Assuming the father's current age is F and the son's current age is S.

Given that the father was 30 years old when his son was born, there is a 30-year age difference between them: F - S = 30.

After a certain period of time, the son's age becomes a quarter of the father's age.

Let's represent the time that has passed since the son was born as T. At that point, the son's age is S + T and the father's age is F + T.

Using the information provided, we can express the son's age (S + T) as a quarter of the father's age (F + T): S + T = 1/4 * (F + T).

By substituting F - S = 30 (from step 2) into the equation, we get: S + T = 1/4 * (S + T + 30).

Simplifying the equation further: 4(S + T) = S + T + 30, which leads to 3S = 3T + 30.

From the equation, we find that the son's age (S) equals the time that has passed (T) plus 10.

To determine the age at which the son was a quarter of his father's age, we need to find a value of T that satisfies the equation S = T + 10.

By setting T = 20, we find that S = 20 + 10 = 30. This means the son is 30 years old when he is a quarter of his father's age.

Therefore, we can conclude that the son was 30 years old when he reached a quarter of his father's age.

User JacksonPro
by
8.1k points

No related questions found