181k views
5 votes
2. Use the first principles definition to differentiate \( f(x)=2 x^{4}-3 \)

User Herr K
by
8.1k points

1 Answer

6 votes

Answer:


f'(x)=8x^3

Explanation:


\displaystyle f'(x)=\lim_(h\rightarrow0)(f(x+h)-f(x))/(h)\\\\f'(x)=\lim_(h\rightarrow0)(2(x+h)^4-3-(2x^4-3))/(h)\\\\f'(x)=\lim_(h\rightarrow0)(2(x^4+4x^3h+6x^2h^2+4xh^3+h^4)-3-2x^4+3)/(h)\\\\f'(x)=\lim_(h\rightarrow0)(2x^4+8x^3h+12x^2h^2+8xh^3+2h^4-2x^4)/(h)\\\\f'(x)=\lim_(h\rightarrow0)(8x^3h+12x^2h^2+8xh^3+2h^4)/(h)\\\\f'(x)=\lim_(h\rightarrow0)8x^3+12x^2h+8xh^2+2h^3\\\\f'(x)=8x^3+12x^2(0)+8x(0)^2+2(0)^3\\\\f'(x)=8x^3

User Damaged Organic
by
8.0k points

No related questions found