1. A ball is at rest on the top of a hill (see the figure).
At the top of the hill, the ball will have [the maximum value of its, no, the minimum value of its] gravitational potential energy and [no, the maximum value of its] kinetic energy. If the ball rolls down the hill then, its [gravitational potential energy, kinetic energy] is converted to [gravitational potential energy, kinetic energy] when it gets to the ground.
2. Get your stopwatch ready and prepare to drop the object from the height h you selected in the previous step. You should drop the object so its [bottom, top, middle] part is initially at the height h. The initial speed of the ball [zero, 9.8 m/s, 9.8 m/s^2, depends on the height h] You'll need to measure the time from when the ball leaves your hand to exactly when it hits the ground [ for the first time it bounces, after it bounces and then comes to rest, both the first time and then after it bounces; then average the two times]
.