The exact value of the expressions are cos(α + β) = -323/325, sin(α + β) = -36/325 and tan(α + β) = 36/323
How to determine the exact value of the expressions
From the question, we have the following parameters that can be used in our computation:
- sin(α)= 24/25, where α lies in quadrant I
- sin(β)= 12/13, where β lies in quadrant II
Using the following equation
sin²(x) + cos²(x) = 1
We have
cos²(x) = 1 - sin²(x)
cos²(α) = 1 - sin²(α)
This gives
cos²(α) = 1 - (24/25)²
cos²(α) = 49/625
α lies in quadrant I
So:
cos(α) = 7/25
Next, we have
cos²(b) = 1 - sin²(b)
This gives
cos²(β) = 1 - (12/13)²
cos²(β) = 25/169
b lies in quadrant II
So:
cos(β) = -5/13
Using the above as a guide, we have the following:
cos(α + β) = cos(α)cos(β) - sin(α)sin(β)
cos(α + β) = 7/25 * -5/13 - 24/25 * 12/13
cos(α + β) = -35/325 -288/325
cos(α + β) = -323/325
sin(α + β) = sin(α)cos(β) + cos(α)sin(β)
sin(α + β) = 24/25 * -5/13 + 7/25 * 12/13
sin(α + β) = -120/325 + 84/325
sin(α + β) = -36/325
tan(α + β) = sin(α + β)/cos(α + β)
tan(α + β) = (-36/325)/(-323/325)
Evaluate
tan(α + β) = 36/323
Hence, the exact value of the expressions are cos(α + β) = -323/325, sin(α + β) = -36/325 and tan(α + β) = 36/323