Answer:
E. 4.3
Explanation:
We have the equation S = -16t^2 + 37t + 211
Given S = 78, then
78 = -16t^2 + 37t + 211
-16t^2 + 37t + 211 - 78 = 0
-16t^2 + 37t + 133 = 0
Using quadratic equation ax^2 + bx + c = 0
x = [-b ± √(b^2 - 4ac)] / (2a)
t = [-37 ± √(37^2 - 4(-16)(133)] / 2(-16)
t = [-37 ± √(1369 - (-8512)] / (-32)
t = [-37 ± √(9881)] / (-32)
a. t = [-37 + √(9881)] / (-32)
t = (-37 + 99.403) / (-32)
t = -1.95
b. t = [-37 - √(9881)] / (-32)
t = (-37 - 99.403) / (-32) = 4.26
Since t can't be a negative number, we have t = 4.26 or 4.3
Please double check my calculation. Hope this helps.