194k views
3 votes
Find the inverse of the given function. f(x)= (x+3)^3 -1

2 Answers

3 votes

Answer:


f^(-1)(x)=\sqrt[3]{(x+1)} -3

Explanation:

Step 1: Replace f(x) with y.


y = (x + 3)^3 - 1

Step 2: Swap the variables x and y.


x = (y + 3)^3 - 1

Step 3: Solve the equation for y.


x + 1 = (y + 3)^3


\sqrt[3]{x+1}=y+3


\sqrt[3]{x+1-3}=y

Step 4: Replace y with
f^(-1)(x) to express the inverse function.


f^(-1)(x)=\sqrt[3]{(x+1)}-3

User Rodney
by
8.6k points
5 votes

Answer:


y=\sqrt[3]{x+1} -3

Explanation:

y=(x+3)³-1

to find the inverse, swap the places of the x and y and solve for y

x=(y+3)³-1

y=∛(x+1)-3

User Maximiliano Guzman
by
8.6k points

No related questions found