221k views
2 votes
Find the coordinate of a point that partitions the segment AB, where A (0, 0) & B(6, 9) into a ratio of 2:1

1 Answer

4 votes

let's call that point C, thus we get the splits of AC and CB


\textit{internal division of a line segment using ratios} \\\\\\ A(0,0)\qquad B(6,9)\qquad \qquad \stackrel{\textit{ratio from A to B}}{2:1} \\\\\\ \cfrac{A\underline{C}}{\underline{C} B} = \cfrac{2}{1}\implies \cfrac{A}{B} = \cfrac{2}{1}\implies 1A=2B\implies 1(0,0)=2(6,9)


(\stackrel{x}{0}~~,~~ \stackrel{y}{0})=(\stackrel{x}{12}~~,~~ \stackrel{y}{18}) \implies C=\underset{\textit{sum of the ratios}}{\left( \cfrac{\stackrel{\textit{sum of x's}}{0 +12}}{2+1}~~,~~\cfrac{\stackrel{\textit{sum of y's}}{0 +18}}{2+1} \right)} \\\\\\ C=\left( \cfrac{ 12 }{ 3 }~~,~~\cfrac{ 18}{ 3 } \right)\implies C=(4~~,~~6)

User SaadAAkash
by
8.1k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.