90.7k views
1 vote
Q 2. 500 kg/hr of steam drives turbine. The steam enters the turbine at 44 atm and 450°C at a linear velocity of 60 m/s and leaves at a point 5m below the turbine inlet at atmospheric pressure and a velocity of 360 m/s. The turbine delivers shaft work at a rate 30 kw and heat loss from the turbine is estimated to be 104 kcal/h. a. Sketch the process flow diagram (1 mark) b. Calculate the specific enthalpy change of the process (7 marks)

User Ysf
by
8.1k points

1 Answer

1 vote

The specific enthalpy change of the process is -3080 kJ/kg.

The specific enthalpy change of the process can be calculated using the formula:

Δh = h2 - h1

Where Δh is the specific enthalpy change, h2 is the specific enthalpy at the turbine outlet, and h1 is the specific enthalpy at the turbine inlet.

To calculate the specific enthalpy change, we need to determine the specific enthalpy values at the turbine inlet and outlet. We can use steam tables or thermodynamic properties of steam to find these values.

Given:

- Steam enters the turbine at 44 atm and 450°C.

- Steam leaves the turbine at atmospheric pressure.

- Turbine delivers shaft work at a rate of 30 kW.

- Heat loss from the turbine is estimated to be 104 kcal/h.

Using the provided information, we can determine the specific enthalpy values at the turbine inlet and outlet. We can then calculate the specific enthalpy change using the formula mentioned earlier.

Learn more about the calculations involved in determining the specific enthalpy change of the process.

User Chris Heald
by
9.0k points