196k views
4 votes
If O is an optimal solution to a linear program, then O is a

vertex of the feasible region. How do you prove
this?

User SyRenity
by
8.2k points

1 Answer

5 votes

To prove that if O is an optimal solution to a linear program, then O is a vertex of the feasible region, we can use the following argument:

Assume that O is an optimal solution to a linear program.

By definition, an optimal solution maximizes or minimizes the objective function while satisfying all the constraints.

Suppose O is not a vertex of the feasible region.

If O is not a vertex, it must lie on an edge or in the interior of a line segment connecting two vertices.

Consider two neighboring feasible solutions, A and B, that define the line segment containing O.

Since O is not a vertex, there exists a feasible solution on the line segment between A and B that has a higher objective function value (if maximizing) or a lower objective function value (if minimizing) than O.

This contradicts our assumption that O is an optimal solution since there exists a feasible solution with a better objective function value.

Therefore, our initial assumption that O is not a vertex must be false.

Thus, O must be a vertex of the feasible region.

By contradiction, we have shown that if O is an optimal solution to a linear program, then O must be a vertex of the feasible region.

User Cesar Romero
by
7.9k points