160k views
1 vote
A bug is moving along the right side of the parabola y=x^2 at a rate such that its distance from the origin is increasing at 4 cm / min.

a. At what rate is the x-coordinate of the bug increasing when the bug is at the point (6. 36)?
b. Use the equation y=x^2 to find an equation relating to dy/dt to dx/dt
c. At what rate is the y-coordinate of the bug increasing when the bug is at the point (6, 36)?

1 Answer

5 votes

To solve this problem, we'll use the concept of related rates. Let's break down each part of the problem:

a. At what rate is the x-coordinate of the bug increasing when the bug is at the point (6, 36)?

Let's assume that the bug's x-coordinate is x, and its y-coordinate is y. Since the bug is moving along the right side of the parabola y = x^2, we have the equation y = x^2. We are given that the distance between the bug and the origin (which is √(x^2 + y^2)) is increasing at a rate of 4 cm/min. We need to find the rate at which the x-coordinate of the bug is changing, which is dx/dt.

Using the Pythagorean theorem, we have:

√(x^2 + y^2) = √(x^2 + (x^2)^2) = √(x^2 + x^4)

Differentiating both sides of the equation with respect to time (t), we get:

(d/dt)√(x^2 + x^4) = (d/dt)4

Applying the chain rule, we have:

(1/2) * (x^2 + x^4)^(-1/2) * (2x + 4x^3 * dx/dt) = 0

Simplifying, we get:

x + 2x^3 * dx/dt = 0

Substituting the coordinates of the bug at the given point (6, 36), we have:

6 + 2(6)^3 * dx/dt = 0

Solving for dx/dt, we get:

2(6)^3 * dx/dt = -6

dx/dt = -6 / (2(6)^3)

dx/dt = -1 / 72 cm/min

Therefore, the x-coordinate of the bug is decreasing at a rate of 1/72 cm/min when the bug is at the point (6, 36).

b. Use the equation y = x^2 to find an equation relating dy/dt to dx/dt

We can differentiate the equation y = x^2 with respect to time (t) using the chain rule:

(d/dt)(y) = (d/dt)(x^2)

dy/dt = 2x * dx/dt

Using the equation y = x^2, we can substitute x = √y into the equation above:

dy/dt = 2√y * dx/dt

This equation relates the rate of change of y (dy/dt) to the rate of change of x (dx/dt) for points on the parabola y = x^2.

c. At what rate is the y-coordinate of the bug increasing when the bug is at the point (6, 36)?

To find the rate at which the y-coordinate of the bug is increasing, we need to determine dy/dt.

Using the equation derived in part b, we have:

dy/dt = 2√y * dx/dt

Substituting the given values at the point (6, 36), we have:

dy/dt = 2√36 * (-1/72)

Simplifying, we get:

dy/dt = -2/72

dy/dt = -1/36 cm/min

Therefore, the y-coordinate of the bug is decreasing at a rate of 1/36 cm/min when the bug is at the point (6, 36).

User Dheeraj Palagiri
by
8.5k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.