Answer:
(a) 95% confidence limits
Upper limit = 4.4229 cm
Lower limit = 4.3371 cm
Confidence interval: (4.3371, 4.4229) (cm)
(b) 99% confidence limits
Upper limit = 4.4417 cm
Lower limit = 4.3183 cm
Confidence Interval: (4.3183, 4.4417) (cm)
Explanation:
Sample size = n = 10
X = 4.38 cm
s = 0.06 cm
Since sample size is 10, we use the t-table to find the limits.
For the 2-tailed 95% case, we get an alpha of 0.025
α = 0.025
Number of degrees of freedom = sample size - 1 = 10 - 1
Number of degrees of freedom = 9
Using the degrees of freedom and α value, we find the t-score,
we get (from a t-table),
We get t-score = t = 2.262
Now, to get the error, we have the formula,

Putting values, we get,

Adding and subtracting from the mean to get the interval limits,
Upper limit = 4.38 + 0.0429 = 4.4229
Upper limit = 4.4229 cm
Lower limit = 4.38 - 0.0429 = 4.3371
Lower limit = 4.3371 cm
b) 99% confidence limits
For 99% we get an alpha value of,
α = (1-0.99)/2
α = 0.005
For which we get a t- value of,
t-score = 3.250
(all specific values are written on last part e.g degrees of freedom and so on)
Finding error,

Finding the upper and lower limits,
Upper limit = 4.38 + 0.0617 = 4.4417
Upper limit = 4.4417 cm
Lower limit = 4.38 - 0.0617 = 4.3183
Lower limit = 4.3183 cm
The confindence interval is (4.3183,4.4417)