90.5k views
3 votes
Find The Indefinite Integral. (Use C For The Constant Of Integration.) ∫Sin4xsin3xdx

User Baso
by
8.7k points

1 Answer

3 votes

Answer:


(1)/(2)\sin(x)-(1)/(14) \sin(7x)

Explanation:

Evaluate the given integral.


\Big\int\big(\sin(4x)\sin(3x)\big) \ dx


\hrulefill

(1) - Apply the sum-to-product identity to the integrand


\boxed{\left\begin{array}{ccc}\text{\underline{Sum-to-Product Identity:}}\\\\\sin(A)\sin(B)=(1)/(2)\Big(\cos(A-B)-\cos(A+B)\Big) \end{array}\right}


\Big\int\big(\sin(4x)\sin(3x)\big) \ dx\\\\\\\Longrightarrow \int\Big[(1)/(2)\Big(\cos(4x-3x)-\cos(4x+3x)\Big) \Big] \ dx\\\\\\\Longrightarrow \int\Big[(1)/(2)\Big(\cos(x)-\cos(7x)\Big) \Big] \ dx\\\\\\\Longrightarrow (1)/(2)\int\Big(\cos(x)-\cos(7x)\Big) \ dx

(2) - We can now apply simple integration rules and use u-substitution


\boxed{\left\begin{array}{ccc}\text{\underline{Trig. Int. Rule for Cosine:}}\\\\\int\cos(x) dx=\sin(x)\end{array}\right}


(1)/(2)\int\Big(\cos(x)-\cos(7x)\Big) \ dx \\\\ \\\text{Let} \ u=7x \rightarrow du=7dx \\ \\\\\Longrightarrow (1)/(2)\Big[\sin(x)-(1)/(7) \int\cos(u)du\Big]\\\\\\\Longrightarrow (1)/(2)\Big[\sin(x)-(1)/(7) \sin(7x)\Big]\\\\\\\Longrightarrow (1)/(2)\sin(x)-(1)/(14) \sin(7x)\Big\\\\\\\therefore \Big\int\big(\sin(4x)\sin(3x)\big) \ dx=\boxed{\boxed{(1)/(2)\sin(x)-(1)/(14) \sin(7x)}}

Thus, the problem is solved.

User Amitkarmakar
by
7.2k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories