60.8k views
4 votes
Find

|A|, |B|,
AB, and |AB|.
Then verify that
|A||B| =
|AB|.
A =
−1
3
1
1
0
1
0
1
0
, B =
−1
0
0
0
2
0
0
0
6
Find \( |A|,|B|, A B \), and \( |A B| \). Then verify that \( |A||B|=|A B| \). \[ A=\left[\begin{array}{rrr} -1 & 3 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{array}\right], \quad B=\left[\begin{array}{rrr} -

1 Answer

4 votes

The answer is, |A| = 2, |B| = -12, and |AB| = -24.

We are given matrices A and B such that

A = $$\left[\begin{array}{rrr} -1 & 3 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{array}\right]$$ and

B = $$\left[\begin{array}{rrr} -1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 6 \end{array}\right]$$,

We have to find |A|, |B|, AB, and |AB| and verify that |A||B| = |AB|.

Calculating |A|:

We know that |A| is the determinant of matrix A.

Calculating the determinant of A using the cofactor method, we get:

$$\begin{aligned}\left|\begin{array}{rrr} -1 & 3 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{array}\right|&=(-1)\left|\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right| -3\left|\begin{array}{cc} 1 & 1 \\ 0 & 0 \end{array}\right| +1\left|\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right|\\&=(-1)(-1)-3(0)+1(1)\\&=2\end{aligned}$$

Thus, |A| = 2.

Calculating |B|:

We know that |B| is the determinant of matrix B.

Calculating the determinant of B using the diagonal method, we get:

$$|B|=(-1)(2)(6)=-12$$

Thus, |B| = -12.

Calculating AB:

Multiplying matrices A and B using the matrix multiplication rule, we get:

$$\begin{aligned}AB&=\left[\begin{array}{rrr} -1 & 3 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{array}\right]\left[\begin{array}{rrr} -1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 6 \end{array}\right]\\&=\left[\begin{array}{ccc} (-1)(-1)+(3)(0)+(1)(0) & (-1)(0)+(3)(2)+(1)(0) & (-1)(0)+(3)(0)+(1)(6) \\ (1)(-1)+(0)(0)+(1)(0) & (1)(0)+(0)(2)+(1)(0) & (1)(0)+(0)(0)+(1)(6) \\ (0)(-1)+(1)(0)+(0)(0) & (0)(0)+(1)(2)+(0)(0) & (0)(0)+(1)(0)+(0)(6) \end{array}\right]\\&=\left[\begin{array}{rrr} 1 & 6 & 6 \\ -1 & 0 & 6 \\ 0 & 2 & 0 \end{array}\right]\end{aligned}$$

Thus, AB = $$\left[\begin{array}{rrr} 1 & 6 & 6 \\ -1 & 0 & 6 \\ 0 & 2 & 0 \end{array}\right]$$.

Calculating |AB|:

We know that |AB| is the determinant of matrix AB.

Calculating the determinant of AB using the cofactor method, we get:

$$\begin{aligned}\left|\begin{array}{rrr} 1 & 6 & 6 \\ -1 & 0 & 6 \\ 0 & 2 & 0 \end{array}\right|&=(1)\left|\begin{array}{cc} 0 & 6 \\ 2 & 0 \end{array}\right| -6\left|\begin{array}{cc} -1 & 6 \\ 0 & 0 \end{array}\right| +6\left|\begin{array}{cc} -1 & 0 \\ 0 & 2 \end{array}\right|\\&=(-1)(12)-(6)(0)+6(-2)\\&=-24\end{aligned}$$

Thus, |AB| = -24.

Verifying |A||B| = |AB|

We know that |A||B| = |AB| if both sides are equal.

Thus, |A||B| = |AB| = 2(-12) = -24.

Hence, |A||B| = |AB| is verified.

User Avius
by
8.1k points