117k views
4 votes
Convert r=tanθ into rectangular form

1 Answer

3 votes

Answer:


√(x^2+y^2) = (y)/(x)

Explanation:

Convert the expression given equation in polar coordinates to rectangular coordinates.


r=\tan\theta


\text{Using the following conversions:}\\\boxed{\left\begin{array}{ccc}\text{\underline{Rect. to Polar:}}\\(x,y)\rightarrow(r, \theta)\\\\r=√(x^2+y^2)\\\\\theta=\tan^(-1)((y)/(x))\end{array}\right}


r=\tan\theta\\\\\\\Longrightarrow √(x^2+y^2) = \tan\theta\\\\\\\Longrightarrow √(x^2+y^2) = \tan(\tan^(-1)\Big((y)/(x) \Big))\\\\\\\Longrightarrow \boxed{√(x^2+y^2) = (y)/(x) }

Thus, the problem is solved.

User Isquierdo
by
8.0k points

No related questions found