Answer:
(7) - Option (1)
(8) - Option (4)
Refer to the step-by-step.
Explanation:
(7) - Rewrite the following expression as fractional exponent.

We can use the rules for exponents to solve this problem.
![\boxed{\left\begin{array}{ccc}\text{\underline{Exponent rules:}}\\\\1.\ a^0=1\\\\2.\ a^m * a^n=a^(m+n)\\\\3.\ a^m / a^n=a^(m-n)\\\\4.\ (ab)^m=a^mb^m\\\\5.\ (a/b)^m=a^m/b^m\\\\6.\ (a^m)^n=a^(mn)\\\\7.\ a^(-m)=1/a^m\\\\8.\ a^(m/n)=(\sqrt[n]{a} )^m\end{array}\right}](https://img.qammunity.org/2024/formulas/mathematics/high-school/hdz4cphf0dwspuqpliiurk4y5hhu29rgjx.png)

Thus, option (1) is correct.

(8) - Express the following expression as a radical

Once again, we can use the rules for exponents to solve this problem.
![\frac{x^{(1)/(3) }x^{(1)/(2) }}{x^(-1)}\\\\\\\Longrightarrow \frac{x^{(1)/(3) +(1)/(2) }}{x^(-1)} \\\\\\\Longrightarrow \frac{x^{(5)/(6) }}{x^(-1)} \ \text{(Used rule 2)} \\ \\ \\ \Longrightarrow x^{(5)/(6)-(-1) }\\\\\\\Longrightarrow x^{(11)/(6) }} \ \text{(Used rule 3)} \\ \\ \\ \Longrightarrow \boxed{\sqrt[6]{x^(11)}} \ \text{(Used rule 8)}](https://img.qammunity.org/2024/formulas/mathematics/high-school/vli52bgqoervsoasyl02o6wzug469me98s.png)
Thus, option (4) is correct.