169k views
5 votes
Then find the . f(x/y) = (9/16) ^ - 3 / ((9/16) ^ - 2) value of * (x/y) ^ - 1 + (y/x) ^ - 1​

1 Answer

7 votes

To simplify the expression
\displaystyle\sf f(x/y) = \left((9)/(16)\right)^(-3) / \left(\left((9)/(16)\right)^(-2)\right) and find the value of
\displaystyle\sf \left((x)/(y)\right)^(-1) + \left((y)/(x)\right)^(-1), we can begin by evaluating each component separately.

Let's simplify
\displaystyle\sf \left((9)/(16)\right)^(-3):


\displaystyle\sf \left((9)/(16)\right)^(-3) can be rewritten as
\displaystyle\sf \left((16)/(9)\right)^(3). Taking a number to the power of -n is equivalent to taking its reciprocal and raising it to the power of n:


\displaystyle\sf \left((16)/(9)\right)^(3) = \left((9)/(16)\right)^(-3).

So,
\displaystyle\sf \left((9)/(16)\right)^(-3) = \left((16)/(9)\right)^(3).

Next, let's simplify
\displaystyle\sf \left((9)/(16)\right)^(-2):


\displaystyle\sf \left((9)/(16)\right)^(-2) can be rewritten as
\displaystyle\sf \left((16)/(9)\right)^(2):


\displaystyle\sf \left((9)/(16)\right)^(-2) = \left((16)/(9)\right)^(2).

Now, let's evaluate
\displaystyle\sf \left((x)/(y)\right)^(-1) + \left((y)/(x)\right)^(-1):


\displaystyle\sf \left((x)/(y)\right)^(-1) + \left((y)/(x)\right)^(-1) is equivalent to
\displaystyle\sf (1)/(\left((x)/(y)\right)) + (1)/(\left((y)/(x)\right)).

Simplifying this expression further:


\displaystyle\sf (1)/(\left((x)/(y)\right)) + (1)/(\left((y)/(x)\right)) = (y)/(x) + (x)/(y).

To simplify the overall expression
\displaystyle\sf f(x/y) = \left((9)/(16)\right)^(-3) / \left(\left((9)/(16)\right)^(-2)\right), we substitute the simplified values:


\displaystyle\sf f(x/y) = \left((16)/(9)\right)^(3) / \left((16)/(9)\right)^(2).

When dividing with the same base raised to different exponents, we can subtract the exponents:


\displaystyle\sf f(x/y) = \left((16)/(9)\right)^(3-2).

Simplifying further:


\displaystyle\sf f(x/y) = \left((16)/(9)\right)^(1).

Finally, we get
\displaystyle\sf f(x/y) = (16)/(9).

And
\displaystyle\sf (y)/(x) + (x)/(y) = (y^2 + x^2)/(xy).

So the expression
\displaystyle\sf \left((x)/(y)\right)^(-1) + \left((y)/(x)\right)^(-1) simplifies to
\displaystyle\sf (y^2 + x^2)/(xy).

User Jonny Buchanan
by
8.3k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories