169k views
5 votes
Then find the . f(x/y) = (9/16) ^ - 3 / ((9/16) ^ - 2) value of * (x/y) ^ - 1 + (y/x) ^ - 1​

1 Answer

7 votes

To simplify the expression
\displaystyle\sf f(x/y) = \left((9)/(16)\right)^(-3) / \left(\left((9)/(16)\right)^(-2)\right) and find the value of
\displaystyle\sf \left((x)/(y)\right)^(-1) + \left((y)/(x)\right)^(-1), we can begin by evaluating each component separately.

Let's simplify
\displaystyle\sf \left((9)/(16)\right)^(-3):


\displaystyle\sf \left((9)/(16)\right)^(-3) can be rewritten as
\displaystyle\sf \left((16)/(9)\right)^(3). Taking a number to the power of -n is equivalent to taking its reciprocal and raising it to the power of n:


\displaystyle\sf \left((16)/(9)\right)^(3) = \left((9)/(16)\right)^(-3).

So,
\displaystyle\sf \left((9)/(16)\right)^(-3) = \left((16)/(9)\right)^(3).

Next, let's simplify
\displaystyle\sf \left((9)/(16)\right)^(-2):


\displaystyle\sf \left((9)/(16)\right)^(-2) can be rewritten as
\displaystyle\sf \left((16)/(9)\right)^(2):


\displaystyle\sf \left((9)/(16)\right)^(-2) = \left((16)/(9)\right)^(2).

Now, let's evaluate
\displaystyle\sf \left((x)/(y)\right)^(-1) + \left((y)/(x)\right)^(-1):


\displaystyle\sf \left((x)/(y)\right)^(-1) + \left((y)/(x)\right)^(-1) is equivalent to
\displaystyle\sf (1)/(\left((x)/(y)\right)) + (1)/(\left((y)/(x)\right)).

Simplifying this expression further:


\displaystyle\sf (1)/(\left((x)/(y)\right)) + (1)/(\left((y)/(x)\right)) = (y)/(x) + (x)/(y).

To simplify the overall expression
\displaystyle\sf f(x/y) = \left((9)/(16)\right)^(-3) / \left(\left((9)/(16)\right)^(-2)\right), we substitute the simplified values:


\displaystyle\sf f(x/y) = \left((16)/(9)\right)^(3) / \left((16)/(9)\right)^(2).

When dividing with the same base raised to different exponents, we can subtract the exponents:


\displaystyle\sf f(x/y) = \left((16)/(9)\right)^(3-2).

Simplifying further:


\displaystyle\sf f(x/y) = \left((16)/(9)\right)^(1).

Finally, we get
\displaystyle\sf f(x/y) = (16)/(9).

And
\displaystyle\sf (y)/(x) + (x)/(y) = (y^2 + x^2)/(xy).

So the expression
\displaystyle\sf \left((x)/(y)\right)^(-1) + \left((y)/(x)\right)^(-1) simplifies to
\displaystyle\sf (y^2 + x^2)/(xy).

User Jonny Buchanan
by
8.3k points

No related questions found