52.7k views
1 vote
Evaluate this following questions ​

Evaluate this following questions ​-example-1

2 Answers

0 votes

Answer:

Explanation:

Evaluate this following questions ​-example-1
User AlexBar
by
7.8k points
6 votes

Answer:


(i) \quad\;\;\; \left(3^0 + 4^(-1)\right) * 2^2=5


(ii) \quad \;\;\left(2^(-1) * 4^(-1)\right) / 2^(-2)=(1)/(2)


(iii) \quad \left((1)/(2)\right)^(-2)+\left((1)/(3)\right)^(-2)+\left((1)/(4)\right)^(-2)=29


(iv) \quad \;\: \left(3^(-1)+4^(-1)+5^(-1)\right)^0=1


(v) \quad \;\;\left\{\left((-2)/(3)\right)^(-2)\right \}^2=(81)/(16)

Explanation:

To evaluate the given expressions, we can use the following exponent rules:


\boxed{\begin{minipage}{6cm}\underline{Exponent Rules}\\\\$a^0=1$ \qquad \qquad \qquad \qquad $1^n=1$\\\\\\$a^b * a^c=a^(b+c)$ \qquad \;\;$a^b / a^c=a^(b-c)$\\\\\\$\left((a)/(b)\right)^c=(a^c)/(b^c)$ \qquad \qquad $\left((a)/(b)\right)^(-c)=\left((b)/(a)\right)^(c)$\\\\\\$a^(-n)=(1)/(a^n)$\qquad \qquad \qquad$(1)/(a^(-n))=a^n$\\\\\\$(a^b)^c=a^(bc)$\\\end{minipage}}

Part (i)


\left(3^0 + 4^(-1)\right) * 2^2


=\left(1 + (2^2)^(-1)\right) * 2^2


=\left(1 + 2^(-2)\right) * 2^2


=2^2 + 2^2* 2^(-2)


=2^2 + 2^(2-2)


=2^2 + 2^(0)


=4+1


=5

Part (ii)


\left(2^(-1) * 4^(-1)\right) / 2^(-2)


=\left(2^(-1) * (2^2)^(-1)\right) / 2^(-2)


= \left(2^(-1) * 2^(-2)\right) / 2^(-2)


=\left(2^(-1-2)\right) / 2^(-2)


=2^(-3) / 2^(-2)


=2^(-3-(-2))


=2^(-3+2)


=2^(-1)


=(1)/(2^1)


=(1)/(2)

Part (iii)


\left((1)/(2)\right)^(-2)+\left((1)/(3)\right)^(-2)+\left((1)/(4)\right)^(-2)


=(1^(-2))/(2^(-2))+(1^(-2))/(3^(-2))+(1^(-2))/(4^(-2))


=(1)/(2^(-2))+(1)/(3^(-2))+(1)/(4^(-2))


=2^2+3^2+4^2


=4+9+16


=13+16


=29

Part (iv)


\left(3^(-1)+4^(-1)+5^(-1)\right)^0


=1

Part (v)


\left\{\left((-2)/(3)\right)^(-2)\right \}^2


=\left((-2)/(3)\right)^(-2* 2)


=\left((-2)/(3)\right)^(-4)


=\left((3)/(-2)\right)^(4)


=(3^4)/((-2)^4)


=(81)/(16)

User Herman Tran
by
8.8k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories