52.7k views
1 vote
Evaluate this following questions ​

Evaluate this following questions ​-example-1

2 Answers

0 votes

Answer:

Explanation:

Evaluate this following questions ​-example-1
User AlexBar
by
7.8k points
6 votes

Answer:


(i) \quad\;\;\; \left(3^0 + 4^(-1)\right) * 2^2=5


(ii) \quad \;\;\left(2^(-1) * 4^(-1)\right) / 2^(-2)=(1)/(2)


(iii) \quad \left((1)/(2)\right)^(-2)+\left((1)/(3)\right)^(-2)+\left((1)/(4)\right)^(-2)=29


(iv) \quad \;\: \left(3^(-1)+4^(-1)+5^(-1)\right)^0=1


(v) \quad \;\;\left\{\left((-2)/(3)\right)^(-2)\right \}^2=(81)/(16)

Explanation:

To evaluate the given expressions, we can use the following exponent rules:


\boxed{\begin{minipage}{6cm}\underline{Exponent Rules}\\\\$a^0=1$ \qquad \qquad \qquad \qquad $1^n=1$\\\\\\$a^b * a^c=a^(b+c)$ \qquad \;\;$a^b / a^c=a^(b-c)$\\\\\\$\left((a)/(b)\right)^c=(a^c)/(b^c)$ \qquad \qquad $\left((a)/(b)\right)^(-c)=\left((b)/(a)\right)^(c)$\\\\\\$a^(-n)=(1)/(a^n)$\qquad \qquad \qquad$(1)/(a^(-n))=a^n$\\\\\\$(a^b)^c=a^(bc)$\\\end{minipage}}

Part (i)


\left(3^0 + 4^(-1)\right) * 2^2


=\left(1 + (2^2)^(-1)\right) * 2^2


=\left(1 + 2^(-2)\right) * 2^2


=2^2 + 2^2* 2^(-2)


=2^2 + 2^(2-2)


=2^2 + 2^(0)


=4+1


=5

Part (ii)


\left(2^(-1) * 4^(-1)\right) / 2^(-2)


=\left(2^(-1) * (2^2)^(-1)\right) / 2^(-2)


= \left(2^(-1) * 2^(-2)\right) / 2^(-2)


=\left(2^(-1-2)\right) / 2^(-2)


=2^(-3) / 2^(-2)


=2^(-3-(-2))


=2^(-3+2)


=2^(-1)


=(1)/(2^1)


=(1)/(2)

Part (iii)


\left((1)/(2)\right)^(-2)+\left((1)/(3)\right)^(-2)+\left((1)/(4)\right)^(-2)


=(1^(-2))/(2^(-2))+(1^(-2))/(3^(-2))+(1^(-2))/(4^(-2))


=(1)/(2^(-2))+(1)/(3^(-2))+(1)/(4^(-2))


=2^2+3^2+4^2


=4+9+16


=13+16


=29

Part (iv)


\left(3^(-1)+4^(-1)+5^(-1)\right)^0


=1

Part (v)


\left\{\left((-2)/(3)\right)^(-2)\right \}^2


=\left((-2)/(3)\right)^(-2* 2)


=\left((-2)/(3)\right)^(-4)


=\left((3)/(-2)\right)^(4)


=(3^4)/((-2)^4)


=(81)/(16)

User Herman Tran
by
8.8k points

No related questions found