35.3k views
2 votes
Find the general solution to the differential equation 2y''+2y'+y=0

User DaniCE
by
7.9k points

1 Answer

4 votes

Answer:


y=c_1e^{-(1)/(2)t }\cos((1)/(2)t )+c_2e^{-(1)/(2)t }\sin((1)/(2)t )

Explanation:

Solve the given differential equation.


2y''+2y'+y=0


\hrulefill

(1) - Find the characteristic equation

For this equation, the characteristic equation is given by:


2m^2+2m+1=0

(2) - Solve for "m" using the quadratic formula


\boxed{\left\begin{array}{ccc}\text{\underline{The Quadratic Formula:}}\\\\m=(-b\pm√(b^2+4ac) )/(2a) \end{array}\right}

a=2, b=2, c=1


\Longrightarrow m=(-2\pm√(2^2-4(2)(1)) )/(2(2)) \\\\\\\Longrightarrow m=(-2\pm√(4-8) )/(4) \\\\\\\Longrightarrow m=(-2\pm√(-4) )/(4) \\\\\\\Longrightarrow m=(-2\pm√(4)√(-1) )/(4) \\\\\\\Longrightarrow m=(-2\pm2i )/(4) \\\\\\\Longrightarrow m=(-2)/(4) \pm(2)/(4)i \\\\\\\therefore \boxed{ m=(-1)/(2) \pm(1)/(1)i }

(3) - Form the general solution


\boxed{\left\begin{array}{ccc}\text{\underline{Solutions to Higher-order DE's:}}\\\\\text{Real,distinct roots} \rightarrow y=c_1e^(m_1t)+c_2e^(m_2t)+...+c_ne^(m_nt)\\\\ \text{Duplicate roots} \rightarrow y=c_1e^(mt)+c_2te^(mt)+...+c_nt^ne^(mt)\\\\ \text{Complex roots} \rightarrow y=c_1e^(\alpha t)\cos(\beta t)+c_2e^(\alpha t)\sin(\beta t)+... \ ;m=\alpha \pm \beta i\end{array}\right}

We have complex roots, so we can form the solution as:


\boxed{\boxed{y=c_1e^{-(1)/(2)t }\cos((1)/(2)t )+c_2e^{-(1)/(2)t }\sin((1)/(2)t )}}

Thus, the problem is solved.

User Virtuexru
by
8.2k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories