Answer:
cosθ = -3/5
secθ = -5/3
cosθ = -3/4
Explanation:
To find the exact values of cosθ, secθ, and cotθ, we need to use the given coordinates of the point where the terminal side of θ intersects the unit circle.
The given coordinates are (-3/5, -4/5).
Using the Pythagorean theorem, we can find the value of the radius of the unit circle at this point:
r = √((-3/5)² + (-4/5)²)
= √(9/25 + 16/25)
= √(25/25)
= 1
Now, let's calculate the trigonometric functions:
cosθ = x-coordinate/radius
= (-3/5)/1
= -3/5
secθ = 1/cosθ
= 1/(-3/5)
= -5/3
cotθ = 1/tanθ
= 1/(-4/3)
= -3/4
Therefore, the exact values of cosθ, secθ, and cotθ are:
- cosθ = -3/5
- secθ = -5/3
- cotθ = -3/4