144k views
2 votes
9.17 Two voltages u₁ and U₂ appear in series so that their TT/3) V sum is U = U₁ + 0₂ Kfv, = 10 cos(507 and U₂ = 12 cos(50r +30°) V, find u.

User Rtrujillor
by
8.6k points

1 Answer

6 votes

To find the sum of the voltages
\displaystyle U_(1) and
\displaystyle U_(2) in series, we can use the formula:


\displaystyle U=U_(1)+U_(2),

where
\displaystyle U_(1) and
\displaystyle U_(2) are the given voltages.

Given:
\displaystyle U_(1)=10\cos(50t), and
\displaystyle U_(2)=12\cos(50t+30^(\circ)).

Substituting the given values into the equation, we have:


\displaystyle U=10\cos(50t)+12\cos(50t+30^(\circ)).

Now, we can simplify the expression by using the trigonometric identity:


\displaystyle \cos(A+B)=\cos A\cos B-\sin A\sin B.

Applying this identity to the equation, we get:


\displaystyle U=10\cos(50t)+12(\cos(50t)\cos(30^(\circ))-\sin(50t)\sin(30^(\circ))).

Simplifying further, we have:


\displaystyle U=10\cos(50t)+12\cos(50t)\cos(30^(\circ))-12\sin(50t)\sin(30^(\circ)).

Using the values of
\displaystyle \cos(30^(\circ))=(√(3))/(2) and
\displaystyle \sin(30^(\circ))=(1)/(2), we can rewrite the equation as:


\displaystyle U=10\cos(50t)+12\cos(50t)\left( (√(3))/(2)\right) -12\sin(50t)\left( (1)/(2)\right).

Simplifying further, we have:


\displaystyle U=10\cos(50t)+6√(3)\cos(50t)-6\sin(50t).

Now, we can combine the terms with the same trigonometric function:


\displaystyle U=( 10+6√(3))\cos(50t)-6\sin(50t).

Hence, the sum of the voltages
\displaystyle U_(1) and
\displaystyle U_(2) is given by:


\displaystyle U=( 10+6√(3))\cos(50t)-6\sin(50t).


\huge{\mathfrak{\colorbox{black}{\textcolor{lime}{I\:hope\:this\:helps\:!\:\:}}}}

♥️
\large{\underline{\textcolor{red}{\mathcal{SUMIT\:\:ROY\:\:(:\:\:}}}}

User Tarji
by
7.9k points