Answer:
The linearization of \( f(x, y, z)=x^{2}-x y+3 z \) at the point \( (2,1,0) \) is given by:
\begin{align*}
L(x,y,z)&=f(2,1,0)+\frac{\partial f}{\partial x}(2,1,0)(x-2)+\frac{\partial f}{\partial y}(2,1,0)(y-1)+\frac{\partial f}{\partial z}(2,1,0)(z-0)\\
&=2^2-2(2)(1)+3(0)+\left(\frac{\partial}{\partial x}(x^{2}-x y+3 z)\bigg|_{(2,1,0)}\right)(x-2)+\left(\frac{\partial}{\partial y}(x^{2}-x y+3 z)\bigg|_{(2,1,0)}\right)(y-1)+\left(\frac{\partial}{\partial z}(x^{2}-x y+3 z)\bigg|_{(2,1,0)}\right)(z-0)\\
&=1-2(x-2)-1(y-1)+3(z-0)\\
&=-2x-y+3z+5.
\end{align*}
Therefore, the linearization of \( f(x, y, z)=x^{2}-x y+3 z \) at the point \( (2,1,0) \) is \( L(x,y,z)=-2x-y+3z+5 \).