Answer:
(B)
![\left[\begin{array}{cc}0.866&-0.5\\0.5&0.866\end{array}\right]](https://img.qammunity.org/2024/formulas/mathematics/high-school/qr1qfqxgob7fovbbkuf8lw03edboq64v4x.png)
Explanation:
You want the rotation matrix for rotation 30° counterclockwise about the origin.
Rotation matrix
For a rotation of positive angle θ (counterclockwise) about the origin, the transformation matrix is ...
![\left[\begin{array}{cc}cos((\theta))&-sin((\theta))\\sin((\theta))&cos((\theta))\end{array}\right]](https://img.qammunity.org/2024/formulas/mathematics/high-school/bf6m8kwijf43by5tkock8a55zzenfmq5po.png)
For θ = 30°, this is ...
![\boxed{\left[\begin{array}{cc}0.866&-0.5\\0.5&0.866\end{array}\right]}](https://img.qammunity.org/2024/formulas/mathematics/high-school/ezzgs36c4mda6l7s6xy8z5zwztqp0njqlu.png)
<95141404393>