58.0k views
3 votes
Pre calculus homework help

Pre calculus homework help-example-1
User Feisky
by
7.7k points

2 Answers

2 votes

Answer:


f'((1)/(3√(e)))=(1)/(2)

Explanation:

Find f'(x) using Product Rule


f(x)=x\ln(3x)\\f'(x)=\ln(3x)+3x((1)/(3x))\\f'(x)=\ln(3x)+1\\\\f'((1)/(3√(e)))=\ln(3\cdot(1)/(3√(e)))+1\\\\f'((1)/(3√(e)))=\ln((1)/(√(e)))+1\\\\f'((1)/(3√(e)))=\ln(e^{-(1)/(2)})+1\\\\f'((1)/(3√(e)))=-(1)/(2)\ln(e)+1\\\\f'((1)/(3√(e)))=-(1)/(2)+1\\\\f'((1)/(3√(e)))=(1)/(2)

User Bera
by
8.9k points
0 votes

Answer:


f'\left((1)/(3√(e))\right)=(1)/(2)

Explanation:

Given function:


f(x)=x\ln(3x)

To find f'(x), differentiate the given function using the product rule.


\boxed{\begin{minipage}{5.5 cm}\underline{Product Rule for Differentiation}\\\\If $y=uv$ then:\\\\$\frac{\text{d}y}{\text{d}x}=u\frac{\text{d}v}{\text{d}x}+v\frac{\text{d}u}{\text{d}x}$\\\end{minipage}}


\textsf{Let\;$u=x^2}
\textsf{Let\;$u=x$}\implies \frac{\text{d}u}{\text{d}x}=1


\textsf{Let\;$v=\ln(3x)$}\implies \frac{\text{d}v}{\text{d}x}=(1)/(3x)\cdot 3=(1)/(x)

Input the values into the product rule to differentiate the function:


\begin{aligned}\frac{\text{d}y}{\text{d}x}&=u\frac{\text{d}v}{\text{d}x}+v\frac{\text{d}u}{\text{d}x}\\\\&=x \cdot (1)/(x)+\ln(3x) \cdot 1\\\\&=1+\ln(3x)\end{aligned}

To find the value of f'(1/(3√e)), substitute x = 1/(3√e) into the differentiated function:


\begin{aligned}f'\left((1)/(3√(e))\right)&=1+\ln\left(3\left((1)/(3√(e))\right)\right)\\\\&=1+\ln\left((1)/(√(e))\right)\\\\&=1+\ln e^{-(1)/(2)}\\\\&=1-(1)/(2)\ln e\\\\&=1-(1)/(2)(1)\\\\&=1-(1)/(2)\\\\&=(1)/(2)\end{aligned}


\hrulefill

Differentiation rules used:


\boxed{\begin{minipage}{4 cm}\underline{Differentiating $ax$}\\\\If $y=ax$, then $\frac{\text{d}y}{\text{d}x}=a$\\\end{minipage}}


\boxed{\begin{minipage}{6 cm}\underline{Differentiating $\ln(f(x))$}\\\\If $y=\ln(f(x))$, then $\frac{\text{d}y}{\text{d}x}=(1)/(f(x))\cdot f'(x)$\\\end{minipage}}

User Sadakatsu
by
7.7k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories