Answer:
Step-by-step explanation:
To find the complex power, we can use the formula:
S = V * I * conj(I) = V * I * I * / |I|^2
Plugging in the given values for V and I, we get:
S = (I0 * cos(300t + 20°)) * (0.2 * cos(300t + 45°)) * (0.2 * cos(-300t - 45°)) / |0.2 * cos(300t + 45°)|^2
This simplifies to:
S = (I0 * 0.2 * cos(300t + 20°) * cos(300t + 45°) * cos(-300t - 45°)) / (0.2^2 * cos^2(300t + 45°))
S = I0 * cos(300t + 20°) * cos(300t + 45°) * cos(-300t - 45°)
S = I0 * cos(300t + 20°) * cos(300t + 45°) * cos(300t + 45°)
S = I0 * cos(300t + 20°) * (cos^2(300t + 45°) + sin^2(300t + 45°))
S = I0 * cos(300t + 20°)
The magnitude of the complex power, A, is therefore equal to |I0 * cos(300t + 20°)|, and the angle, θ, is equal to 20°.
So, A = |I0 * cos(300t + 20°)| and θ = 20°.