209k views
3 votes
Calculate the mass defect and nuclear binding energy per nucleon of the each of the nuclides indicated below.

Part A) Li-7 (atomic mass = 7.016003 )
Express your answer using five decimal places.
Mass Defect=
Part B )Express your answer using four significant figures.
Binding energy per nucleon=
Part C)Ti -48 (atomic mass = 47.947947 )
Express your answer using five decimal places.
Mass Defect=
Part D) Express your answer using four significant figures.
Binding energy per nucleon =
Part E) -84 (atomic mass = 83.91151 )
Express your answer using five decimal places.
Mass defect =
Part F) Express your answer using four significant figures.
Binding energy per nucleon =

User Dontcare
by
7.9k points

2 Answers

2 votes

Final answer:

The mass defect is calculated by subtracting the atomic mass of a nuclide from the sum of the masses of its protons and neutrons. The binding energy per nucleon is calculated by dividing the binding energy of a nucleus by its number of nucleons.

Step-by-step explanation:

The mass defect of a nucleus is the difference between the mass of the nucleus and the sum of the masses of its individual protons and neutrons. To calculate the mass defect, subtract the atomic mass of the nuclide from the sum of the masses of its protons and neutrons. For example, to find the mass defect of Li-7, subtract its atomic mass (7.016003) from the sum of the masses of 3 protons (3.00728) and 4 neutrons (4.03192).



The binding energy per nucleon is the energy required to separate the nucleons in a nucleus, and it is calculated by dividing the binding energy of the nucleus by the number of nucleons. The binding energy can be calculated using the equation BE = (Am)c², where Am is the mass defect. To find the binding energy per nucleon of a nuclide, divide its binding energy by its number of nucleons. For example, to find the binding energy per nucleon of Li-7, divide its binding energy by its number of nucleons (7).

User Arkascha
by
7.7k points
5 votes

Final answer:

The mass defect for a nuclide is calculated by subtracting its atomic mass from the mass of its constituent protons, neutrons, and electrons. The nuclear binding energy per nucleon is determined by dividing the total binding energy of the nucleus by the number of nucleons. An example calculation was shown for helium-4.

Step-by-step explanation:

To calculate the mass defect and nuclear binding energy per nucleon, we use the following strategy:

  1. Sum the masses of the individual protons, neutrons, and electrons that would form the nuclide, or use the mass of the appropriate number of hydrogen atoms (1H), since the mass of a hydrogen atom is approximately the mass of one proton plus one electron.
  2. Calculate the mass defect (Δm) by subtracting the actual measured atomic mass (matomic) of the nuclide from the calculated mass of the separated nucleons and electrons.
  3. To find the total binding energy (BE), multiply the mass defect by the speed of light squared (c2). This gives the energy in joules, which can be converted to electronvolts (eV) if necessary. The binding energy per nucleon is obtained by dividing the total binding energy by the number of nucleons (A).

Here is an example using the nuclide helium-4 (4He), which has a mass defect of 0.0305 atomic mass units (amu). The binding energy is then calculated using the mass-energy equivalence equation, taking care to convert the mass defect from amu to kilograms.

User Ichramm
by
7.5k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.