221k views
2 votes
Help me solve this problem pelase

Help me solve this problem pelase-example-1

1 Answer

2 votes

Answer:


A\approx 218.57\text{ cm}^2

Explanation:

We can solve for the area of this isosceles triangle using Heron's formula:


A = √(s(s-a)(s-b)^2)

where
a is length of the base of the triangle,
b is the length of the two congruent sides, and
s is the triangle's semiperimeter (half-perimeter).

We can identify the following values from the given information:


  • a = 14 \text{ cm}

  • b = 32\text{ cm}

  • \text{---}\text{---}\text{---}\text{---}\text{---}\text{---}\text{---}\text{---}\text{---}\text{---}\text{---}\text{---}\text{---}\text{---} \\s = (14 + 32 + 32)/(2) = (78)/(2) = 39\text{ cm}

Now, we can plug these values into the above area formula:


A = √(s(s-a)(s-b)^2)


A = √(39(39-14)(39-32)^2)


A = √(39(25)(7)^2)


A = √(47,775)


A = 35√(39)


\boxed{A\approx 218.57\text{ cm}^2}

User Hemanth S R
by
8.9k points

Related questions

asked Jul 12, 2024 77.2k views
Clutch asked Jul 12, 2024
by Clutch
8.7k points
1 answer
2 votes
77.2k views
asked Aug 9, 2024 209k views
Shanebp asked Aug 9, 2024
by Shanebp
7.2k points
1 answer
4 votes
209k views