Answer:
To find the coordinates of any maximum or minimum and the intervals of increase and decrease for the function f(x) = x^2 + x - 6, we need to analyze its first and second derivatives.
Let's go step by step:
Find the first derivative:
f'(x) = 2x + 1
Set the first derivative equal to zero to find critical points:
critical points: 2x + 1 = 0
critical points: 2x + 1 = 0 2x = -1
critical points: 2x + 1 = 0 2x = -1 x = -1/2
Determine the second derivative:
f''(x) = 2
f''(x) = 2Since the second derivative is a constant (2), we can conclude that the function is concave up for all values of x. This means that the critical point we found in step 2 is a minimum.
Determine the coordinates of the minimum:
To find the y-coordinate of the minimum, substitute the x-coordinate (-1/2) into the original function: f(-1/2) = (-1/2)^2 - 1/2 - 6 f(-1/2) = 1/4 - 1/2 - 6 f(-1/2) = -24/4 f(-1/2) = -6
So, the coordinates of the minimum are (-1/2, -6).
Analyze the intervals of increase and decrease:
Since the function has a minimum, it increases before the minimum and decreases after the minimum.
Interval of Increase:
(-∞, -1/2)
Interval of Decrease:
(-1/2, ∞)
To summarize:
- The coordinates of the minimum are (-1/2, -6).
- The function increases on the interval (-∞, -1/2).
- The function decreases on the interval (-1/2, ∞).