28.5k views
3 votes
Find the volume of the solid obtained by rotating the region

bounded by the graphs y=(x-4)^3,the x-axis, x=0, and x=5
about the y-axis? (Express numbers in exact form. Use symbolic
notation and fractions where needed.)

User Kamala
by
8.8k points

1 Answer

3 votes

Answer:

Explanation:

To find the volume of the solid obtained by rotating the region bounded by the graphs y = (x - 4)^3, the x-axis, x = 0, and x = 5 about the y-axis, we can use the method of cylindrical shells.

The formula for the volume of a solid obtained by rotating a region bounded by the graph of a function f(x), the x-axis, x = a, and x = b about the y-axis is given by:

V = 2π ∫[a, b] x * f(x) dx

In this case, the function f(x) = (x - 4)^3, and the bounds of integration are a = 0 and b = 5.

Substituting these values into the formula, we have:

V = 2π ∫[0, 5] x * (x - 4)^3 dx

To evaluate this integral, we can expand the cubic term and then integrate:

V = 2π ∫[0, 5] x * (x^3 - 12x^2 + 48x - 64) dx

V = 2π ∫[0, 5] (x^4 - 12x^3 + 48x^2 - 64x) dx

Integrating each term separately:

V = 2π [1/5 x^5 - 3x^4 + 16x^3 - 32x^2] evaluated from 0 to 5

Now we can substitute the bounds of integration:

V = 2π [(1/5 * 5^5 - 3 * 5^4 + 16 * 5^3 - 32 * 5^2) - (1/5 * 0^5 - 3 * 0^4 + 16 * 0^3 - 32 * 0^2)]

Simplifying:

V = 2π [(1/5 * 3125) - 0]

V = 2π * (625/5)

V = 2π * 125

V = 250π

Therefore, the volume of the solid obtained by rotating the region bounded by the graphs y = (x - 4)^3, the x-axis, x = 0, and x = 5 about the y-axis is 250π cubic units.

User Marverix
by
8.8k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories