117k views
1 vote
The mid-points of sides of a triangle are (3, 0), (4, 1) and (2, 1) respectively. Find the vertices of the triangle.​

User RFG
by
8.0k points

1 Answer

2 votes

Answer:

(1, 0), (3, 2), (5, 0)

Explanation:

To find the vertices of the triangle given the midpoints of its sides, we can use the midpoint formula:


\boxed{\begin{minipage}{7.4 cm}\underline{Midpoint between two points}\\\\Midpoint $=\left((x_2+x_1)/(2),(y_2+y_1)/(2)\right)$\\\\\\where $(x_1,y_1)$ and $(x_2,y_2)$ are the endpoints.\\\end{minipage}}

Let the vertices of the triangle be:


  • A (x_A,y_A)

  • B (x_B,y_B)

  • C (x_C, y_C)

Let the midpoints of the sides of the triangle be:

  • D (2, 1) = midpoint of AB.
  • E (4, 1) = midpoint of BC.
  • F (3, 0) = midpoint of AC.

Since D is the midpoint of AB:


\left((x_B+x_A)/(2),(y_B+y_A)/(2)\right)=(2,1)


\implies (x_B+x_A)/(2)=2 \qquad\textsf{and}\qquad (y_B+y_A)/(2)\right)=1


\implies x_B+x_A=4\qquad\textsf{and}\qquad y_B+y_A=2

Since E is the midpoint of BC:


\left((x_C+x_B)/(2),(y_C+y_B)/(2)\right)=(4,1)


\implies (x_C+x_B)/(2)=4 \qquad\textsf{and}\qquad (y_C+y_B)/(2)\right)=1


\implies x_C+x_B=8\qquad\textsf{and}\qquad y_C+y_B=2

Since F is the midpoint of AC:


\left((x_C+x_A)/(2),(y_C+y_A)/(2)\right)=(3,0)


\implies (x_C+x_A)/(2)=3 \qquad\textsf{and}\qquad (y_C+y_A)/(2)\right)=0


\implies x_C+x_A=6\qquad\textsf{and}\qquad y_C+y_A=0

Add the x-value sums together:


x_B+x_A+x_C+x_B+x_C+x_A=4+8+6


2x_A+2x_B+2x_C=18


x_A+x_B+x_C=9

Substitute the x-coordinate sums found using the midpoint formula into the sum equation, and solve for the x-coordinates of the vertices:


\textsf{As \;$x_B+x_A=4$, then:}


x_C+4=9\implies x_C=5


\textsf{As \;$x_C+x_B=8$, then:}


x_A+8=9 \implies x_A=1


\textsf{As \;$x_C+x_A=6$, then:}


x_B+6=9\implies x_B=3

Add the y-value sums together:


y_B+y_A+y_C+y_B+y_C+y_A=2+2+0


2y_A+2y_B+2y_C=4


y_A+y_B+y_C=2

Substitute the y-coordinate sums found using the midpoint formula into the sum equation, and solve for the y-coordinates of the vertices:


\textsf{As \;$y_B+y_A=2$, then:}


y_C+2=2\implies y_C=0


\textsf{As \;$y_C+y_B=2$, then:}


y_A+2=2 \implies y_A=0


\textsf{As \;$y_C+y_A=0$, then:}


y_B+0=2\implies y_B=2

Therefore, the coordinates of the vertices A, B and C are:

  • A (1, 0)
  • B (3, 2)
  • C (5, 0)
The mid-points of sides of a triangle are (3, 0), (4, 1) and (2, 1) respectively. Find-example-1
User Aviram Segal
by
8.5k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories