141k views
1 vote
In AMNO, the measure of 0=90°, ON = 15, MO = 8, and NM = 17. What is the value of the cosine of M to the nearest hundredth?

In AMNO, the measure of 0=90°, ON = 15, MO = 8, and NM = 17. What is the value of-example-1

1 Answer

0 votes

To find the value of the cosine of angle M in triangle AMNO, we can use the Law of Cosines. The Law of Cosines states that in a triangle with sides
\displaystyle a,
\displaystyle b, and
\displaystyle c, and angle
\displaystyle C opposite side
\displaystyle c, the following equation holds:


\displaystyle c^(2) =a^(2) +b^(2) -2ab\cos( C)

In triangle AMNO, we have the following information:


\displaystyle AM=17 (side
\displaystyle a)


\displaystyle MN=15 (side
\displaystyle b)


\displaystyle AN=8 (side
\displaystyle c)

Angle M = 90 degrees

We can apply the Law of Cosines to find the value of
\displaystyle \cos( M):


\displaystyle AN^(2) =AM^(2) +MN^(2) -2\cdot AM\cdot MN\cdot \cos( M)

Substituting the given values:


\displaystyle 8^(2) =17^(2) +15^(2) -2\cdot 17\cdot 15\cdot \cos( M)

Simplifying:


\displaystyle 64=289+225-510\cdot \cos( M)


\displaystyle 64=514-510\cdot \cos( M)

Rearranging the equation:


\displaystyle 510\cdot \cos( M) =514-64


\displaystyle 510\cdot \cos( M) =450

Dividing both sides by 510:


\displaystyle \cos( M) =(450)/(510)

Simplifying:


\displaystyle \cos( M) =(15)/(17)

Therefore, the value of the cosine of angle M in triangle AMNO, to the nearest hundredth, is approximately
\displaystyle 0.88.


\huge{\mathfrak{\colorbox{black}{\textcolor{lime}{I\:hope\:this\:helps\:!\:\:}}}}

♥️
\large{\underline{\textcolor{red}{\mathcal{SUMIT\:\:ROY\:\:(:\:\:}}}}

User Bjh Hans
by
8.8k points