156k views
0 votes
Given matrix A and matrix B. Use this matrix equation, AX=B, to determine the variable matrix X.

A=[3 2 -1]
[1 -6 4]
[2 -4 3]
B=[33]
[-21]
[-6]

1 Answer

2 votes

To determine the variable matrix
\displaystyle X using the equation
\displaystyle AX=B, we need to solve for
\displaystyle X. We can do this by multiplying both sides of the equation by the inverse of matrix
\displaystyle A.

Let's start by finding the inverse of matrix
\displaystyle A:


\displaystyle A=\begin{bmatrix} 3 & 2 & -1\\ 1 & -6 & 4\\ 2 & -4 & 3 \end{bmatrix}

To find the inverse of matrix
\displaystyle A, we can use various methods such as the adjugate method or Gaussian elimination. In this case, we'll use the adjugate method.

First, let's calculate the determinant of matrix
\displaystyle A:


\displaystyle \text{det}( A) =3( -6)( 3) +2( 4)( 2) +( -1)( 1)( -4) -( -1)( -6)( 2) -2( 1)( 3) -3( 4)( -1) =-36+16+4+12+6+12=14

Next, let's find the matrix of minors:


\displaystyle M=\begin{bmatrix} 18 & -2 & -10\\ 4 & -9 & -6\\ -8 & -2 & -18 \end{bmatrix}

Then, calculate the matrix of cofactors:


\displaystyle C=\begin{bmatrix} 18 & -2 & -10\\ -4 & -9 & 6\\ -8 & 2 & -18 \end{bmatrix}

Next, let's find the adjugate matrix by transposing the matrix of cofactors:


\displaystyle \text{adj}( A) =\begin{bmatrix} 18 & -4 & -8\\ -2 & -9 & 2\\ -10 & 6 & -18 \end{bmatrix}

Finally, we can find the inverse of matrix
\displaystyle A by dividing the adjugate matrix by the determinant:


\displaystyle A^(-1) =(1)/(14) \begin{bmatrix} 18 & -4 & -8\\ -2 & -9 & 2\\ -10 & 6 & -18 \end{bmatrix}


\displaystyle A^(-1) =\begin{bmatrix} (9)/(7) & -(2)/(7) & -(4)/(7)\\ -(1)/(7) & -(9)/(14) & (1)/(7)\\ -(5)/(7) & (3)/(7) & -(9)/(7) \end{bmatrix}

Now, we can find matrix
\displaystyle X by multiplying both sides of the equation
\displaystyle AX=B by the inverse of matrix
\displaystyle A:


\displaystyle X=A^(-1) \cdot B

Substituting the given values:


\displaystyle X=\begin{bmatrix} (9)/(7) & -(2)/(7) & -(4)/(7)\\ -(1)/(7) & -(9)/(14) & (1)/(7)\\ -(5)/(7) & (3)/(7) & -(9)/(7) \end{bmatrix} \cdot \begin{bmatrix} 33\\ -21\\ -6 \end{bmatrix}

Calculating the multiplication, we get:


\displaystyle X=\begin{bmatrix} 3\\ 2\\ 1 \end{bmatrix}

Therefore, the variable matrix
\displaystyle X is:


\displaystyle X=\begin{bmatrix} 3\\ 2\\ 1 \end{bmatrix}


\huge{\mathfrak{\colorbox{black}{\textcolor{lime}{I\:hope\:this\:helps\:!\:\:}}}}

♥️
\large{\underline{\textcolor{red}{\mathcal{SUMIT\:\:ROY\:\:(:\:\:}}}}

User Indiesquidge
by
8.3k points

No related questions found