38.5k views
5 votes
Question 12 of 17

Which of the following pairs of functions are inverses of each other?
A. f(x)=3(3)-10 and g(x)=+10
-8
B. f(x)= x=8+9 and g(x) = 4(x+8)-9
C. f(x) = 4(x-12)+2 and g(x)=x+12-2
4
OD. f(x)-3-4 and g(x) = 2(x+4)
3

User DennisFrea
by
7.7k points

1 Answer

3 votes

Answer:

Explanation:

To determine if two functions are inverses of each other, we need to check if their compositions result in the identity function.

Let's examine each pair of functions:

A. f(x) = 3(3) - 10 and g(x) = -8

To find the composition, we substitute g(x) into f(x):

f(g(x)) = 3(-8) - 10 = -34

Since f(g(x)) ≠ x, these functions are not inverses of each other.

B. f(x) = x + 8 + 9 and g(x) = 4(x + 8) - 9

To find the composition, we substitute g(x) into f(x):

f(g(x)) = 4(x + 8) - 9 + 8 + 9 = 4x + 32

Since f(g(x)) ≠ x, these functions are not inverses of each other.

C. f(x) = 4(x - 12) + 2 and g(x) = x + 12 - 2

To find the composition, we substitute g(x) into f(x):

f(g(x)) = 4((x + 12) - 2) + 2 = 4x + 44

Since f(g(x)) ≠ x, these functions are not inverses of each other.

D. f(x) = 3 - 4 and g(x) = 2(x + 4)

To find the composition, we substitute g(x) into f(x):

f(g(x)) = 3 - 4 = -1

Since f(g(x)) = x, these functions are inverses of each other.

Therefore, the pair of functions f(x) = 3 - 4 and g(x) = 2(x + 4) are inverses of each other.

User Usman Zafar
by
7.8k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.