Answer:
To calculate the pH of a buffer solution, we need to know the concentrations of both the acid and its conjugate base (salt). In this case, we are given that the concentration of acid is 10 times the concentration of the salt.
Let's assume the concentration of the salt is "x" (in any suitable unit). Therefore, the concentration of the acid would be 10x.
In a buffer solution, the pH is determined by the ratio of the concentrations of the acid and its conjugate base (salt). We can use the Henderson-Hasselbalch equation to calculate the pH:
pH = pKa + log([A-]/[HA])
In this equation, pKa is the negative logarithm of the acid dissociation constant (Ka), and [A-] and [HA] are the concentrations of the conjugate base and acid, respectively.
Since the concentration of the acid is 10x and the concentration of the salt is x, we can rewrite the equation as:
pH = pKa + log(x/(10x))
Simplifying further:
pH = pKa + log(1/10)
The log(1/10) is equal to -1, so the equation becomes:
pH = pKa - 1
Without knowing the specific pKa value for the acid-salt pair in the buffer solution, we cannot determine the exact pH. However, if we have the pKa value, we can subtract 1 from it to find the pH of the buffer solution.
Step-by-step explanation:
b