Answer:
x = 27.5
y = 21.25
∠AOC = 137.5
∠BOE = 74.5
Explanation:
a)
Since AOD is a straight line ,
∠AOE + ∠EOD = 180
⇒ ∠AOE + 5x= 180
⇒ ∠AOE = 180 - 5x - EQ(1)
∠AOB + ∠BOC + ∠COD = 180
⇒ 32 + 188 - 3x + 2y = 180
⇒ 3x - 2y = 40
⇒ x = (40 + 2y) / 3 - EQ(2)
Since COE is a straight line,
∠EOD + ∠DOC = 180
⇒ 5x + 2y = 180
sub x from eq(2)
5((40 + 2y) / 3) + 2y = 180

⇒ y = 21.25
sub in eq(2)
x = (40 + 2(21.24)) / 3

x = 27.5
b) ∠AOC = ∠AOB + ∠BOC
= 32 + 188 - 3x
= 220 - 3(27.5)
= 220 - 82.5
∠AOC = 137.5
From eq(1):
∠AOE = 180 - 5x
= 180 - 5(27.5)
= 180 - 137.5
∠AOE = 42.5
∠BOE = ∠AOB + ∠ AOE
32 + 42.5
∠BOE = 74.5