128k views
5 votes
I need a step by step explanation please Thank you so much

I need a step by step explanation please Thank you so much-example-1
User Jarek
by
8.0k points

2 Answers

3 votes
a. To find where tan 0 = tan 265° and 0 is not equal to 265°, we can use the following formula:

tan(theta) = sin(theta) / cos(theta)

So we have:

tan(0) = tan(265°)

sin(0) / cos(0) = sin(265°) / cos(265°)

Since 0 is not equal to 265°, we know that cos(0) is not equal to cos(265°). Therefore, we can simplify the equation as follows:

sin(0) * cos(265°) = sin(265°) * cos(0)

Using the identity sin(a - b) = sin(a)cos(b) - cos(a)sin(b), we can rewrite this equation as:

sin(0 - 265°) = sin(-265°) = -sin(265°)

Since sin(-x) = -sin(x), we have:

sin(0 + 265°) = sin(265°)

Using the identity sin(a + b) = sin(a)cos(b) + cos(a)sin(b), we can rewrite this equation as:

sin(0)cos(265°) + cos(0)sin(265°) = sin(265°)

Since tan(theta) = sin(theta)/cos(theta), we can divide both sides of the equation by cos(0):

tan(0) + tan(265°) = 1

tan(0) + (-1.1918...) = 1

tan(0) ≈ **2.1918...**

Therefore, the solution is **tan 0 ≈ 2.1918...**.

b. If sin 0 = 2/3 and cos 0 > 0, then we can use the following formula to find cotangent:

cot(theta) = cos(theta)/sin(theta)

We are given that sin 0 = 2/3 and cos 0 > 0, so we know that:

cos^2(theta) + sin^2(theta) = 1

cos^2(theta) + (2/3)^2 = 1

cos^2(theta) = 1 - (2/3)^2

cos^2(theta) = 5/9

Since cos 0 > 0, we know that cos theta is positive. Therefore:

cos(theta) = sqrt(5/9)

= (sqrt(5))/3

Now we can use the formula for cotangent:

cot(0) = cos(0)/sin(0)

= [(sqrt(5))/3] / (2/3)

= sqrt(5)/2

Therefore, the solution is **cot 0 = sqrt(5)/2**.

c. If 5/2 cos 0 +4 =2, we can solve for cos 0 as follows:

5/2 cos 0 +4 =2

5/2 cos 0 = -2

cos 0 = -4/5

Now we can use the inverse cosine function to find the angle:

cos^-1(-4/5)

≈ **131.8°**

Therefore, the solution is **0 ≈ 131.8°**.

I hope this helps! Let me know if you have any other questions.
User Purpletoucan
by
7.7k points
0 votes

Answers:

  • (a) 85
  • (b)
    \boldsymbol{(√(5))/(2)}
  • (c) Approximately 143.1301 and 216.8699

======================================================

Work shown for part (a)

tan(x) = tan(x-180)

tan(265) = tan(265-180)

tan(265) = tan(85)

-------------------------

Work shown for part (b)

sine = opposite/hypotenuse = 2/3

opposite = 2 and hypotenuse = 3

Use a = 2 and c = 3 to determine b in the pythagorean theorem.


a^2+b^2 = c^2\\\\2^2+b^2 = 3^2\\\\4+b^2 = 9\\\\b^2 = 9-4\\\\b^2 = 5\\\\b = √(5)\\\\

adjacent =
√(5) and opposite = 2


\cot(\theta) = \frac{\text{adjacent}}{\text{opposite}}\\\\\cot(\theta) = (√(5))/(2)\\\\

-------------------------

Work shown for part (c)


(5)/(2)\cos(\theta)+4 = 2\\\\(5)/(2)\cos(\theta) = 2-4\\\\(5)/(2)\cos(\theta) = -2\\\\\cos(\theta) = -2*((2)/(5))\\\\\cos(\theta) = -(4)/(5)\\\\


\theta = \pm\arccos\left(-(4)/(5)\right)+360n \ \ \text{ .... where n is an integer} \\\\\theta = \pm143.1301+360n\\\\\theta = 143.1301+360n \ \text{ or } \ \theta = -143.1301+360n\\\\

Here's a table of values for selected inputs of n


\begin{array}c \cline{1-3}n & 143.1301+360n & -143.1301+360n\\\cline{1-3}-1 & -216.8699 & -503.1301\\\cline{1-3}0 & 143.1301 & -143.1301\\\cline{1-3}1 & 503.1301 & 216.8699\\\cline{1-3}2 & 863.1301 & 576.8699\\\cline{1-3}\end{array}

The results 143.1301 and 216.8699 are in the interval
0^(\circ) < \theta < 360^(\circ), which makes them the two approximate solutions.

You can use graphing software such as GeoGebra or Desmos to confirm the answers.

User Ali Emili
by
7.8k points

No related questions found