187k views
2 votes
In A ABC. AB = 6 cm, AC = 15 cm, and mA = 48° What is the area of A ABC? Enter your answer as a decimal in the box. Round only your final answer to the nearest hundredth.​

User Dylan Karr
by
8.0k points

1 Answer

4 votes

Answer:

To find the area of triangle ABC, we can use the formula A = (1/2) * b * h, where b is the base of the triangle and h is its height. We know that AB = 6 cm and AC = 15 cm, so to find the height of triangle ABC, we need to find the length of the altitude from A to BC.

To find the length of the altitude, we can use trigonometry. Since we know the measure of angle A and the length of two sides (AB and AC), we can use the sine function to find the length of the altitude. Specifically, we can use the formula h = AC * sin(A).

Plugging in the values we have, we get:

h = 15 cm * sin(48°) h ≈ 11.32 cm

Now that we have the height, we can find the area of triangle ABC:

A = (1/2) * AB * h A = (1/2) * 6 cm * 11.32 cm A ≈ 33.96 cm²

So the area of triangle ABC is approximately 33.96 cm². Rounded to the nearest hundredth, the answer is 33.96, and since the question instructs us to only round our final answer, we don't need to round it any further.

Explanation:

User Van SallyOne
by
7.9k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories