Answer:
Step-by-step explanation:
To determine the distance traveled by an oscillator of amplitude a in a given number of periods, we need to consider the relationship between the amplitude and the total distance covered during one complete period.
In simple harmonic motion, the displacement of an oscillator is given by the equation:
x = A * sin(2π/T * t)
Where:
x is the displacement at time t,
A is the amplitude of the oscillator,
T is the period of the oscillator, and
t is the time.
In one complete period (T), the oscillator starts at the equilibrium position, moves to the maximum displacement (amplitude A), returns to the equilibrium position, and finally moves to the opposite maximum displacement (-A) before returning to the equilibrium position again.
Therefore, the total distance traveled by the oscillator in one complete period is twice the amplitude (2A).
Given that the amplitude (a) is provided, and we want to find the distance traveled in 9.5 periods, we can calculate it as follows:
Distance traveled in 9.5 periods = 9.5 * 2 * amplitude (a)
Distance traveled in 9.5 periods = 19 * a
Therefore, the distance traveled by the oscillator in 9.5 periods is 19 times the amplitude (a).