64.4k views
5 votes
Find the value of the combination. 13C5

2 Answers

4 votes

Answer:


_(13)C_5=1287

Explanation:


\displaystyle _nC_r=(n!)/(r!(n-r)!)\\\\_(13)C_5=(13!)/(5!(13-5)!)\\\\_(13)C_5=(13!)/(5!\cdot8!)\\\\_(13)C_5=(13*12*11*10*9)/(5*4*3*2*1)\\\\_(13)C_5=(154440)/(120)\\\\_(13)C_5=1287

User Richard Jordan
by
8.4k points
3 votes

GiveN :-


  • \sf \: {}^(13){ C}_(5) \: = 66

To finD :-

  • the value of the Combination = ??

SolutioN :-


\sf \hookrightarrow \: \: {}^(13){ C}_(5) \:


\sf \hookrightarrow \: \: {}^(13){ C}_(5) \: = (13!)/(5!(13 - 5)!) \\


\sf \hookrightarrow \: \: {}^(13){ C}_(5) \: = (13!)/(5!(8)!) \\


\sf \hookrightarrow \: \: {}^(13){ C}_(5) \: = (13!)/(5! * 8!) \\


\sf \hookrightarrow \: \: {}^(13){ C}_(5) \: = (13 * 12 * 11 * 10 * 9 * 8!)/(5! * 8!) \\


\sf \hookrightarrow \: \: {}^(13){ C}_(5) \: = \frac{13 * 12 * 11 * 10 * 9 * \cancel{8!}}{5! * \cancel{8!}} \\


\sf \hookrightarrow \: \: {}^(13){ C}_(5) \: = (13 * 12 * 11 * 10 * 9 )/(5 * 4 * 3 * 2 * 1) \\


\sf \hookrightarrow \: \: {}^(13){ C}_(5) \: = (156 * 110 * 9 )/(20 * 6 * 1) \\


\sf \hookrightarrow \: \: {}^(13){ C}_(5) \: = (156 * 990 )/(20 * 6 ) \\


\sf \hookrightarrow \: \: {}^(13){ C}_(5) \: = (154440 )/(120 ) \\


\sf \hookrightarrow \: \: {}^(13){ C}_(5) \: = 1287 \\

User Royi Benyossef
by
8.6k points

No related questions found