Answer:
The 75th term of the arithmetic sequence -17, -13, -9.... is:
![a_(75)=279](https://img.qammunity.org/2022/formulas/mathematics/high-school/s0cyw3newi4umau3euu9av6u9ue3elhjg1.png)
Explanation:
Given the sequence
![-17, -13, -9....](https://img.qammunity.org/2022/formulas/mathematics/high-school/ef9mxidoloih3f9qvk0p7bwp4m54aj2nqc.png)
An arithmetic sequence has a constant difference 'd' and is defined by
computing the differences of all the adjacent terms
The difference between all the adjacent terms is the same and equal to
![d=4](https://img.qammunity.org/2022/formulas/mathematics/college/f507pmsun0s5qzcautsb4ribnvdxjxgqmv.png)
The first element of the sequence is:
![a_1=-17](https://img.qammunity.org/2022/formulas/mathematics/high-school/pmz6rt2oez8529feayadhnr57jceegvz3l.png)
now substitute
and
in the nth term of the sequence
![a_n=a_1+\left(n-1\right)d](https://img.qammunity.org/2022/formulas/mathematics/college/3vmzbvhisu702q5jbb4op8ei5uigsiyn5y.png)
![a_n=4\left(n-1\right)-17](https://img.qammunity.org/2022/formulas/mathematics/high-school/k3t8u8ec0xaqaglnxk7ibey3ia64p1kpg6.png)
![a_n=4n-21](https://img.qammunity.org/2022/formulas/mathematics/high-school/om3287yfpc1ayhs90oavqhz6mmnrh9kvt4.png)
Now, substitute n = 75 in the
sequence to determine the 75th sequence
![a_n=4n-21](https://img.qammunity.org/2022/formulas/mathematics/high-school/om3287yfpc1ayhs90oavqhz6mmnrh9kvt4.png)
![a_(75)=4\left(75\right)-21](https://img.qammunity.org/2022/formulas/mathematics/high-school/xmq4c0pc8s8zk8cp9e88togdzz07kzes7m.png)
![a_(75)=300-21](https://img.qammunity.org/2022/formulas/mathematics/high-school/o1zbo4au7pvbjk527onczrj53u1x88mg4d.png)
![a_(75)=279](https://img.qammunity.org/2022/formulas/mathematics/high-school/s0cyw3newi4umau3euu9av6u9ue3elhjg1.png)
Therefore, the 75th term of the arithmetic sequence -17, -13, -9.... is:
![a_(75)=279](https://img.qammunity.org/2022/formulas/mathematics/high-school/s0cyw3newi4umau3euu9av6u9ue3elhjg1.png)